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4.1 Introduction

In this chapter, we introduce several search algorithms that are useful for problem
solving by multiple agents. Search is an umbrella term for various problem solving
techniques in Al In search problems, the sequence of actions required for solving
a problem cannot be known a priori but must be determined by a trial-and-error
exploration of alternatives. Since virtually all AI problems require some sort of
search, search has a long and distinguished history in AL

The problems that have been addressed by search algorithms can be divided
into three classes: path-finding problems, constraint satisfaction problems, and two-
player games.

A typical example of the first class, i.e., path-finding problems, is a puzzle called
the n-puzzle. Figure 4.1 shows the 8-puzzle, which consists of eight numbered tiles
arranged on a 3 x 3 board (in a generalized case, there are n = k% — 1 tiles on a
kx k board). The allowed moves are to slide any tile that is horizontally or vertically
adjacent to the empty square into the position of the empty square. The objective
is to transform the given initial configuration to the goal configuration by making
allowed moves. Such a problem is called a path-finding problem, since the objective
is to find a path (a sequence of moves) from the initial configuration to the goal
configuration.

A constraint satisfaction problem (CSP) involves finding a goal configuration
rather than finding a path to the goal configuration. A typical example of a CSP
is a puzzle called 8-queens. The objective is to place eight queens on a chess board
(8x8 squares) so that these queens will not threaten each other. This problem is
called a constraint satisfaction problem since the objective is to find a configuration
that satisfies the given conditions (constraints).

Another important class of search problems is two-player games, such as chess.
Since two-player games deal with situations in which two competitive agents exist,
it is obvious that these studies have a very close relation with DAI/multiagent
systems where agents are competitive.

On the other hand, most algorithms for the other two classes (constraint satisfac-
tion and path-finding) were originally developed for single-agent problem solving.
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Figure 4.1 Example of a path-finding problem (8-puzzle).

Figure 4.2 Example of a constraint satisfaction problem (8-queens).
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Among them, what kinds of algorithms would be useful for cooperative problem
solving by multiple agents?

In general, an agent is assumed to have limited rationality. More specifically,
the computational ability or the recognition ability of an agent is usually limited.
Therefore, getting the complete picture of a given problem may be impossible.
Even if the agent can manage to get complete information on the problem, dealing
with the global information of the problem can be too expensive and beyond the
computational capability of the agent. Therefore, the agent must do a limited
amount of computations using only partial information on the problem and then
take appropriate actions based on the available resources.

In most standard search algorithms (e.g., the A* algorithm [20] and backtracking
algorithms [26]), each step is performed sequentially, and for each step, the global
knowledge of the problem is required. For example, the A* algorithm extends the
wavefront of explored states from the initial state and chooses the most promising
state within the whole wavefront.

On the other hand, a search problem can be represented by using a graph, and
there exist search algorithms with which a problem is solved by accumulating local
computations for each node in the graph. The execution order of these local com-
putations can be arbitrary or highly flexible, and can be executed asynchronously
and concurrently. We call these algorithms asynchronous search algorithms.

When a problem is solved by multiple agents each with limited rationality,
asynchronous search algorithms are appropriate based on the following reasons.

= We can assume that the computational and recognition abilities required to
perform the local computations of each node will be small enough for the agents.
On the other hand, if each step of the algorithm requires the global knowledge
of the problem, it may be beyond the capability of an agent.

= Jf multiple agents are cooperatively solving a problem using the asynchronous
search algorithm, the execution order of these agents can be highly flexible or
arbitrary. Otherwise, we need to synchronize the computations of the agents,
and the overhead for such control can be very high.

The importance of solving a problem by combining such local and asynchronous
computations was first pointed out by Lesser [24], and this idea has been widely
acknowledged in DAT studies.

In the following, we give a formal definition of a constraint satisfaction problem
and a path-finding problem and introduce asynchronous search algorithms for
solving these problems. Then, we show the formalization of and algorithms for
two-player games.
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Figure 4.3 Example of a constraint satisfaction problem (graph-coloring).

4.2 Constraint Satisfaction
4.2.1 Definition of a Constraint Satisfaction Problem

A constraint satisfaction problem (CSP) is a problem to find a consistent value as-
signment of variables that take their values from finite, discrete domains. Formally,
a CSP consists of n variables x1, x2, ..., z,, whose values are taken from finite, dis-
crete domains Dy, D», ..., D,, respectively, and a set of constraints on their values.
A constraint is defined by a predicate. That is, the constraint pj(@p1,...,2;) is a
predicate that is defined on the Cartesian product Dy X ... x Dy;. This predicate
is true iff the value assignment of these variables satisfies this constraint. Solving a
CSP is equivalent to finding an assignment of values to all variables such that all
constraints are satisfied. Since constraint satisfaction is NP-complete in general, a
trial-and-error exploration of alternatives is inevitable.

For example, in the 8-queens problem, it is obvious that only one queen can be
placed in each row. Therefore, we can formalize this problem as a CSP, in which
there are eight variables x1, s, ..., xs, each of which corresponds to the position
of a queen in each row. The domain of a variable is {1,2,...,8}. A solution is a
combination of values of these variables. The constraints that the queens will not
threaten each other can be represented as predicates, e.g., a constraint between x;
and x; can be represented as x; # ;A | i — j |#| i —xj |

Another typical example problem is a graph-coloring problem (Figure 4.3). The
objective of a graph-coloring problem is to paint nodes in a graph so that any two
nodes connected by a link do not have the same color. Each node has a finite number
of possible colors. This problem can be formalized as a CSP by representing the
color of each node as a variable, and the possible colors of the node as a domain of
the variable.

If all constraints are binary (i.e., between two variables), a CSP can be represented
as a graph, in which a node represents a variable, and a link between nodes
represents a constraint between the corresponding variables. Figure 4.4 shows a
constraint graph representing a CSP with three variables x1, z2, z3 and constraints
Ty # x3, T3 # x3. For simplicity, we will focus our attention on binary CSPs in



4.2 Constraint Satisfaction 169

Figure 4.4 Constraint graph.

the following chapter. However, the algorithms described in this chapter are also
applicable to non-binary CSPs.

Then, how can the CSP formalization be related to DAI? Let us assume that the
variables of a CSP are distributed among agents. Solving a CSP in which multiple
agents are involved (such a problem is called a distributed CSP) can be considered
as achieving coherence among the agents. Many application problems in DAI e.g.,
interpretation problems, assignment problems, and multiagent truth maintenance
tasks, can be formalized as distributed CSPs.

An interpretation problem can be viewed as a problem to find a compatible set
of hypotheses that correspond to the possible interpretations of input data. An
interpretation problem can be mapped into a CSP by viewing possible interpreta-
tions as possible variable values. If there exist multiple agents, and each of them
is assigned a different part of the input data, such a problem can be formalized as
a distributed CSP. The agents can eliminate the number of hypotheses by using
the filtering algorithm or the hyper-resolution-based consistency algorithm, both of
which are described in the following.

If the problem is to allocate tasks or resources to multiple agents, and there exist
inter-agent constraints, such a problem can be formalized as a distributed CSP by
viewing each task or resource as a variable and the possible assignments as values.
Furthermore, we can formalize multiagent truth maintenance tasks described in
Chapter 2 as a distributed CSP, where each item of the uncertain data is represented
as a variable whose value can be IN or OUT.

In the following, we describe asynchronous search algorithms in which each
process corresponds to a variable, and the processes act asynchronously to solve
a CSP.

We assume the following communication model.

= Processes communicate by sending messages. A process can send messages to
other processes iff the process knows the addresses/identifiers of other processes.

= The delay in delivering a message is finite, though random.

= For the transmission between any pair of processes, messages are received in the
order in which they were sent.
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Furthermore, we call the processes that have links to x; neighbors of z;. We assume
that a process knows the identifiers of its neighbors.

4.2.2 Filtering Algorithm

In the filtering algorithm [36], each process communicates its domain to its neigh-
bors and then removes values that cannot satisfy constraints from its domain. More
specifically, a process x; performs the following procedure revise(z;,x;) for each
neighboring process ;.

procedure revise(z;, ;)
for all v; € D; do
if there is no value v; € D; such that v; is consistent with v;
then delete v; from D;; end if; end do;

If some value of the domain is removed by performing the procedure revise,
process x; sends the new domain to neighboring processes. If x; receives a new
domain from a neighboring process z;, the procedure revise(z;,x;) is performed
again. The execution order of these processes is arbitrary.

We show an example of an algorithm execution in Figure 4.5. The example
problem is a smaller version of the 8-queens problem (3-queens problem). There
are three variables 1, x5, 3, whose domains are {1,2,3}. Obviously, this problem is
over-constrained and has no solution. After exchanging the domains (Figure 4.5 (a)),
x1 performs revise(zy,z2) and removes 2 from its domain (if x; = 2, none of
x2’s values satisfies the constraint with x;). Similarly, x» performs revise(zs,x3),
x3 performs revise(rs,z2), and each process removes 2 from its domain. After
exchanging the new domains (Figure 4.5 (b)), z; performs revise(z,z3), and
removes 1 and 3 from its domain. The domain of z; then becomes an empty set,
so the process discovers that this problem has no solution.

By applying the filtering algorithm, if a domain of some variable becomes an
empty set, the problem is over-constrained and has no solution. Also, if each
domain has a unique value, then the combination of the remaining values becomes
a solution. On the other hand, if there exist multiple values for some variable, we
cannot tell whether the problem has a solution or not, and further trial-and-error
search is required to find a solution.

Figure 4.6 shows a graph-coloring problem. Since there are three variables and the
only possible colors of each variable are red or blue, this problem is over-constrained.
However, in the filtering algorithm, no process can remove a value from its domain.
Furthermore, in the 8-queens problem (which has many solutions), no process can
remove a value from its domain by using the filtering algorithm.

Since the filtering algorithm cannot solve a problem in general, it should be
considered a preprocessing procedure that is invoked before the application of other
search methods. Even though the filtering algorithm alone cannot solve a problem,
reducing the domains of variables for the following search procedure is worthwhile.
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Figure 4.5 Example of an algorithm execution (filtering).
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4.2.3 Hyper-Resolution-Based Consistency Algorithm

The filtering algorithm is one example of a general class of algorithms called
consistency algorithms. Consistency algorithms can be classified by the notion of
k-consistency [9]. A CSP is k-consistent iff the following condition is satisfied.

®  Given any instantiation of any k—1 variables satisfying all the constraints among
those variables, it is possible to find an instantiation of any kth variable such
that these k variable values satisfy all the constraints among them.

The filtering algorithm achieves 2-consistency (also called arc-consistency), i.e.,
any variable value has at least one consistent value of another variable. A k-
consistency algorithm transforms a given problem into an equivalent (having the
same solutions as the original problem) k-consistent problem. If the problem is k-
consistent and j-consistent for all j < k, the problem is called strongly k-consistent.
If there are n variables in a CSP and the CSP is strongly n-consistent, then a
solution can be obtained immediately without any trial-and-error exploration, since
for any instantiation of & — 1 variables, we can always find at least one consistent
value for k-th variables.

In the following, we describe a consistency algorithm using the the hyper-
resolution rule [6]. In this algorithm, all constraints are represented as a nogood,
which is a prohibited combination of variable values. For example, in Figure 4.6, a
constraint between 7 and z» can be represented as two nogoods {z; = red,zy =
red} and {z; = blue,xo = blue}.

A new nogood is generated from several existing nogoods by using the hyper-
resolution rule. For example, in Figure 4.6, there are nogoods such as {z; =
red, o = red} and {z; = blue,z3 = blue}. Furthermore, since the domain of z;
is {red,blue}, (z1 = red) V (z1 = blue) holds. The hyper-resolution rule combines
nogoods and the condition that a variable takes one value from its domain, and
generates a new nogood, e.g., {x2 = red, z3 = blue}.

The meaning of this nogood is as follows. If x5 is red, x; cannot be red. Also, if
x3 is blue, x; cannot be blue. Since x; is either red or blue, if x5 is red and x3 is
blue, there is no possible value for z;. Therefore, this combination cannot satisfy
all constraints.

The hyper-resolution rule is described as follows (A; is a proposition such as
Try = 1)

AiVAs V...V A,
—|(A1 /\AH...),
—|(A2/\A21...),

_‘(Am/\Aml---)
_|(‘411/\.../\‘421/\.../\‘47”1..‘)
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In the hyper-resolution-based consistency algorithm, each process represents its
constraints as nogoods. The process then generates new nogoods by combining
the information about its domain and existing nogoods using the hyper-resolution
rule. A newly obtained nogood is communicated to related processes. If a new
nogood is communicated, the process tries to generate further new nogoods using
the communicated nogood.

For example, in Figure 4.6, assume z; generates a new nogood {zy = red, zs =
blue} using nogood {x; = red, x5 = red} and nogood {x; = blue, r3 = blue}. This
nogood is communicated to x5 and x3. x5 generates a new nogood {x3 = blue}
using this communicated nogood and nogood {zs = blue, x5 = blue}. Similarly, x;
generates a new nogood {x2 = blue,x3 = red} from {z; = blue, o = blue} and
{x1 = red, xz3 = red}. x5 generates a new nogood {z3 = red} using this nogood and
nogood {z2 = red,xz3 = red}. Then, x5 can generate {} from nogood{zs = blue}
and {z3 = red}, which is an empty set. Recall that a nogood is a combination of
variable values that is prohibited. Therefore, a superset of a nogood cannot be a
solution. Since any set is a superset of an empty set, if an empty set becomes a
nogood, the problem is over-constrained and has no solution.

The hyper-resolution rule can generate a very large number of nogoods. If we
restrict the application of the rules so that only nogoods whose lengths (the length
of a nogood is the number of variables that constitute the nogood) are less than k
are produced, the problem becomes strongly k-consistent.

4.2.4 Asynchronous Backtracking

The asynchronous backtracking algorithm [39] is an asynchronous version of a
backtracking algorithm, which is a standard method for solving CSPs. In the
asynchronous backtracking algorithm, the priority order of variables/processes is
determined, and each process communicates its tentative value assignment to
neighboring processes. The priority order is determined by alphabetical order of the
variable identifiers, i.e., preceding variables in the alphabetical order have higher
priority. A process changes its assignment if its current value assignment is not
consistent with the assignments of higher priority processes. If there exists no value
that is consistent with the higher priority processes, the process generates a new
nogood, and communicates the nogood to a higher priority process; thus the higher
priority process changes its value.

The generation procedure of a new nogood is basically identical to the hyper-
resolution rule described in Section 4.2.3. However, in the consistency algorithm,
all constraints (nogoods) are considered for generating new nogoods. On the other
hand, the asynchronous backtracking algorithm generates only the constraints that
are not satisfied in the current situation. In other words, a new nogood is generated
only if the nogood actually occurs in the asynchronous backtracking.

Each process maintains the current value assignment of other processes from its
viewpoint (local_view). It must be noted that since each process acts asynchronously
and concurrently and processes communicate by sending messages, the local_view
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when received (ok?, (z;, d;)) do — (i)
add (z;, dj) to local_view,
check_local_view;

end do;

when received (nogood, nogood) do — (ii)
record nogood as a new constraint;
when (zy, di) where xj, is not a neighbor do
request x; to add z; to its neighbors;
add z, to neighbors;
add (x, di) to local_view; end do;
check_local_view;

end do;

procedure check_local_view
when local_view and current_value are not consistent do
if no value in D; is consistent with local_view
then resolve a new nogood using hyper-resolution rule
and send the nogood to the lowest priority process in the nogood,
when an empty nogood is found do
broadcast to other processes that there is no solution,
terminate this algorithm; end do;
else select d € D; where local_view and d are consistent;
current_value < d;
send (ok?, (zi, d)) to neighbors; end if; end do;

Algorithm 4.1 Procedures for receiving messages (asynchronous backtracking).

may contain obsolete information. Even if x;’s local_view says that z;’s current
assignment is 1, z; may already have changed its value. Therefore, if z; does not
have a consistent value with the higher priority processes according to its local _view,
we cannot use a simple control method such as x; orders a higher priority process
to change its value, since the local_view may be obsolete. Therefore, each process
needs to generate and communicate a new constraint (nogood), and the receiver of
the new nogood must check whether the nogood is actually violated from its own
local_view.

The main message types communicated among processes are ok? messages to
communicate the current value, and nogood messages to communicate a new nogood.
The procedures executed at process x; after receiving an ok? message and a nogood
message are described in Algorithm 4.1 (i) and Algorithm 4.1 (ii), respectively.

We show an example of an algorithm execution in Figure 4.7. In Figure 4.7 (a),
after receiving ok? messages from x; and zs, the local_view of x3 will be
{(z1,1), (x2,2)}. Since there is no possible value for x5 consistent with this lo-
cal_view, a new nogood {(z1, 1), (x2,2)} is generated. x5 chooses the lowest priority
process in the nogood, i.e., 2, and sends a mogood message. By receiving this
nogood message, x5 records this nogood. This nogood, {(z1, 1), (x2,2)}, contains
process x1, which is not a neighbor zs. Therefore, a new link must be added be-
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Figure 4.7 Example of an algorithm execution (asynchronous backtracking).

tween z7 and 3. xo requests x; to send x1’s value to o, and adds (z1,1) to its
local_view (Figure 4.7 (b)). z2 checks whether its value is consistent with the lo-
cal_view. The local_view {(x1,1)} and the assignment (zs,2) violate the received
nogood {(x1,1), (z2,2)}. However, there is no other possible value for z. There-
fore, xo generates a new nogood {(x1,1)}, and sends a nogood message to
(Figure 4.7 (¢)).

The completeness of the algorithm (always finds a solution if one exists, and
terminates if no solution exists) is guaranteed. The outline of the proof is as follows.

We can show that this algorithm never falls into an infinite processing loop by
induction. In the base case, assume that the process with the highest priority, z1,
is in an infinite loop. Because it has the highest priority, z; only receives nogood
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messages. When it proposes a possible value, x; either receives a nogood message
back, or else gets no message back. If it receives nogood messages for all possible
values of its variable, then it will generate an empty nogood (any choice leads to
a constraint violation) and the algorithm will terminate. If it does not receive a
nogood message for a proposed value, then it will not change that value. Either
way, it cannot be in an infinite loop.

Now, assume that processes z; to xx—1 (k > 2) are in a stable state, and the
process xj, is in an infinite processing loop. In this case, the only messages process
T receives are nogood messages from processes whose priorities are lower than k,
and these nogood messages contain only the processes x; to xy. Since processes xp
to xp_1 are in a stable state, the nogoods process xj, receives must be compatible
with its local_view, and so xj, will change instantiation of its variable with a different
value. Because its variable’s domain is finite, x; will either eventually generate a
value that does not cause it to receive a nogood (which contradicts the assumption
that xj is in an infinite loop), or else it exhausts the possible values and sends a
nogood to one of zy ...xp_1. However, this nogood would cause a process, which we
assumed as being in a stable state, to not be in a stable state. Thus, by contradiction,
x), cannot be in an infinite processing loop.

Since the algorithm does not fall in an infinite processing loop, the algorithm
eventually reaches a solution if one exists, and if the problem is over-constrained,
some process will eventually generate a nogood that is an empty set.

4.2.5 Asynchronous Weak-Commitment Search

One limitation of the asynchronous backtracking algorithm is that the pro-
cess/variable ordering is statically determined. If the value selection of a higher
priority process is bad, the lower priority processes need to perform an exhaustive
search to revise the bad decision.

We can reduce the chance of a process making a bad decision by introducing value
ordering heuristics, such as the min-conflict heuristic [27]. In this heuristic, when
a variable value is to be selected, a value that minimizes the number of constraint
violations with other variables is preferred. Although this heuristic has been found
to be very effective [27], it cannot completely avoid bad decisions.

The asynchronous weak-commitment search algorithm[38] introduces a method
for dynamically ordering processes so that a bad decision can be revised without an
exhaustive search. More specifically, a priority value is determined for each variable,
and the priority order among processes is determined using these priority values by
the following rules.

= For each variable/process, a non-negative integer value representing the priority
order of the variables/processes is defined. We call this value the priority value.

= The order is defined such that any variable/process with a larger priority value
has higher priority.

® If the priority values of multiple processes are the same, the order is determined
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by the alphabetical order of the identifiers.
= For each variable/process, the initial priority value is 0.

= If there exists no consistent value for z;, the priority value of x; is changed to
k + 1, where k is the largest priority value of related processes.

In the asynchronous weak-commitment search, as in the asynchronous backtrack-
ing, each process concurrently assigns a value to its variable, and sends the variable
value to other processes. After that, processes wait for and respond to incoming
messages. Although the following algorithm is described in a way that a process
reacts to messages sequentially, a process can handle multiple messages concur-
rently, i.e., the process first revises the local_view and constraints according to the
messages, and then performs check_local_view only once.

In Algorithm 4.2, the procedure executed at process x; by receiving an ok?
message is described (the procedure for a mogood message is basically identical to
that for the asynchronous backtracking algorithm). The differences between these
procedures and the procedures for the asynchronous backtracking algorithm are as
follows.

= The priority value, as well as the current value assignment, is communicated
through the ok? message (Algorithm 4.2 (i)).

= The priority order is determined using the communicated priority values. If the
current value is not consistent with the local_view, i.e., some constraint with
variables of higher priority processes is not satisfied, the agent changes its value
using the min-conflict heuristic, i.e., it selects a value that is not only consistent
with the local_view, but also minimizes the number of constraint violations with
variables of lower priority processes (Algorithm 4.2 (iii)).

= When z; cannot find a consistent value with its local_view, x; sends nogood mes-

sages to other processes, and increments its priority value. If z; cannot resolve
a new nogood, x; will not change its priority value but will wait for the next
message (Algorithm 4.2 (ii)). This procedure is needed to guarantee the com-
pleteness of the algorithm. In the asynchronous weak-commitment algorithm,
processes try to avoid situations previously found to be nogoods. However, due
to the delay of messages, a local_view of a process can occasionally be identi-
cal to a previously found nogood. In order to avoid reacting to such unstable
situations, and performing unnecessary changes of priority values, each process
records the nogoods that have been resolved. If no new nogood is found, the
process will not change the priority value and waits for the next message.

We illustrate an execution of the algorithm using the distributed 4-queens prob-
lem, i.e., there exist four processes, each of which corresponds to a queen in one of
the rows. The goal of the process is to find positions on a 4x4 chess board so that
the queens do not threaten each other.

The initial values are shown in Figure 4.8 (a). Processes communicate these values
with each other. The values within parentheses represent the priority values. The
initial priority values are 0. Since the priority values are equal, the priority order is
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when received (ok?, (z;, d;, priority)) do — (i)
add (z;, dj, priority) to local_view,
check_local_view;

end do;

procedure check_local_view
when local_view and current_value are not consistent do
if no value in D; is consistent with local_view
then resolve a new nogood using hyper-resolution rule;
when an empty nogood is found do
broadcast to other processes that there is no solution,
terminate this algorithm; end do;
when a new nogood is found do — (ii)
send the nogood to the processes in the nogood;
current_priority < 1 4+ pmaz,
where pmqe is the maximal priority value of neighbors;
select_best_value; end do;
else select_best_value; end if; end do;

procedure select_best_value
select d € D; where local_view and d are consistent, and d minimizes
the number of constraint violations with lower priority processes; — (iii)
current_value < d;
send (ok?, (i, d, current_priority)) to neighbors; end do;

Algorithm 4.2 Procedures for receiving messages (asynchronous weak-
commitment search).

x1 0[O V)(®) V)(®) O[O
x2 (0) o O o O o O ©)
x3 O O (U2 (©) 210 210
x4 (0) of M @) 0] @) ) @)

(a) (b) (c) (d)

Figure 4.8 Example of an algorithm execution (asynchronous weak-commitment
search).
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determined by the alphabetical order of the identifiers. Therefore, only the value of
4 18 not consistent with its local_view. Since there is no consistent value, x4 sends
nogood messages and increments its priority value. In this case, the value minimizing
the number of constraint violations is 3, since it conflicts with z3 only. Therefore,
x4 selects 3 and sends ok? messages to the other processes (Figure 4.8 (b)). Then,
x3 tries to change its value. Since there is no consistent value, x3 sends nogood
messages, and increments its priority value. In this case, the value that minimizes
the number of constraint violations is 1 or 2. In this example, z3 selects 1 and
sends ok? messages to the other processes (Figure 4.8 (c)). After that, xy changes
its value to 2, and a solution is obtained (Figure 4.8 (d)).

In the distributed 4-queens problem, there exists no solution when z;’s value is
1. We can see that the bad decision of x; (assigning its value to 1) can be revised
without an exhaustive search in the asynchronous weak-commitment search.

The completeness of the algorithm is guaranteed. The outline of the proof is as
follows. The priority values are changed if and only if a new nogood is found.
Since the number of possible nogoods is finite, the priority values cannot be
changed infinitely. Therefore, after a certain time point, the priority values will be
stable. If the priority values are stable, the asynchronous weak-commitment search
algorithm is basically identical to the asynchronous backtracking algorithm. Since
the asynchronous backtracking is guaranteed to be complete, the asynchronous
weak-commitment search algorithm is also complete.

However, the completeness of the algorithm is guaranteed by the fact that the
processes record all nogoods found so far. Handling a large number of nogoods is
time/space consuming. We can restrict the number of recorded nogoods, i.e., each
process records only a fixed number of the most recently found nogoods. In this
case, however, the theoretical completeness cannot be guaranteed (the algorithm
may fall into an infinite processing loop in which processes repeatedly find identical
nogoods). Yet, when the number of recorded nogoods is reasonably large, such an
infinite processing loop rarely occurs. Actually, when solving large-scale problems,
the theoretical completeness has only theoretical importance.

4.3 Path-Finding Problem
4.3.1 Definition of a Path-Finding Problem

A path-finding problem consists of the following components: a set of nodes N, each
representing a state, and a set of directed links L, each representing an operator
available to a problem solving agent. We assume that there exists a unique node s
called the start node, representing the initial state. Also, there exists a set of nodes
G, each of which represents a goal state. For each link, the weight of the link is
defined, which represents the cost of applying the operator. We call the weight of
the link between two nodes the distance between the nodes. We call the nodes that
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Figure 4.10 Planning for multiple robot hands.

have directed links from node ¢ neighbors of node i.

The 8-puzzle problem can be formalized as a path-finding problem by repre-
senting possible arrangements of tiles as nodes, and allowed moves as links. The
arrangements that can be reached by sliding one tile are the neighbors of the orig-
inal arrangement. In this problem, the weights of all links are 1, and for each link,
there exists a link in the opposite direction.

Another example of a path-finding problem is a maze in a grid state space
(Figure 4.9). There exists a grid state-space with obstacles. We allow moves along
the horizontal and vertical dimensions, but not diagonal motions. The initial state
is at the upper-left corner and the goal state is at the bottom-right corner.

Then, how can the path-finding problem formalization be related to DAI? As-
sume that multiple robots are exploring an unknown environment for finding a
certain location. Such a problem can be formalized as a path-finding problem. Fur-
thermore, the planning problem of multiple robot hands shown in Figure 4.10 can
be represented as a path-finding problem.

In the following, we first introduce asynchronous dynamic programming as the
basis of other algorithms. Then, we present the Learning Real-time A* algorithm,
the Real-time A* algorithm, the Moving Target Search algorithm, Real-time Bidi-
rectional Search algorithms, and real-time multiagent search algorithms, as special
cases of asynchronous dynamic programming.
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4.3.2 Asynchronous Dynamic Programming

In a path-finding problem, the principle of optimality holds. In short, the principle
of optimality states that a path is optimal if and only if every segment of it is
optimal. For example, if there exists an optimal (shortest) path from the start node
to a goal node, and there exists an intermediate node x on the path, the segment
from the start node to node z is actually the optimal path from the start node to
node z. Similarly, the segment from node x to the goal state is also the optimal
path from node x to the goal state.

Let us represent the shortest distance from node i to goal nodes as h*(i). ;From
the principle of optimality, the shortest distance via a neighboring node j is given
by f*(j) = k(i,7) + h*(j), where k(i, j) is the cost of the link between 4, 5. If node i
is not a goal node, the path to a goal node must visit one of the neighboring nodes.
Therefore, h*(i) = min; f*(j) holds.

If h* is given for each node, the optimal path can be obtained by repeating the
following procedure.

= For each neighboring node j of the current node 4, compute f*(j) = k(i,7) +
h*(j). Then, move to the j that gives min; f*(j).

Asynchronous dynamic programming [4] computes h* by repeating the local com-
putations of each node.
Let us assume the following situation.

= For each node i, there exists a process corresponding to .

= Each process records h(i), which is the estimated value of h*(7). The initial value
of h(i) is arbitrary (e.g., 0o, 0) except for goal nodes.

= For each goal node g, h(g) is 0.

= FEach process can refer to h values of neighboring nodes (via shared memory or
message passing)

In this situation, each process updates h(i) by the following procedure. The
execution order of the processes is arbitrary.

= For each neighboring node j, compute f(j) = k(i,7) + h(j), where h(j) is the
current estimated distance from j to a goal node, and k(i, ) is the cost of the
link from ¢ to j. Then, update h(i) as follows: h(i) < min; f(j).

We show an example of an algorithm execution in Figure 4.11. Assume that the
initial value of h is infinity except for the goal node (Figure 4.11 (i)). Then, h
values are changed at the nodes adjoining the goal node (Figure 4.11 (ii)). It must
be noted that these values do not have to be the true values. For example, though
the estimated cost from node d is currently 3, there exists a path from node d to
the goal node via node ¢, and the cost of the path is 2.

However, h values are further changed at the nodes that can be reached to the
goal node (Figure 4.11 (iii)). Now, the h value of d is equal to the true value. We
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Figure 4.11 Example of an algorithm execution (asynchronous dynamic program-
ming).

can see that the h values converge to the true values from the nodes that are close
to the goal node. By repeating the local computations, it is proved that for each
node ¢, h(i) will eventually converge to the true value h*(7) if the costs of all links
are positive.

In reality, we cannot use asynchronous dynamic programming for a reasonably
large path-finding problem. In a path-finding problem, the number of nodes can be
huge, and we cannot afford to have processes for all nodes. However, asynchronous
dynamic programming can be considered a foundation for the other algorithms
introduced in this section. In these algorithms, instead of allocating processes for all
nodes, some kind of control is introduced for enabling the execution by a reasonable
number of processes (or agents).

4.3.3 Learning Real-Time A*

When only one agent is solving a path-finding problem, it is not always possible
to perform local computations for all nodes. For example, autonomous robots may
not have enough time for planning and should interleave planning and execution.
Therefore, the agent must selectively execute the computations for certain nodes.
Given this requirement, which node should the agent choose? One intuitively
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natural way is to choose the current node where the agent is located. It is easily
to imagine that the sensing area of an autonomous robot is always limited. First,
the agent updates the h value of the current node, and then moves to the best
neighboring node. This procedure is repeated until the agent reaches a goal state.
This method is called the Learning Real-time A* (LRTA*) algorithm [19].

More precisely, in the LRTA* algorithm, each agent repeats the following proce-
dure (we assume that the current position of the agent is node ). As with asyn-
chronous dynamic programming, the agent records the estimated distance h(i) for
each node.

1. Lookahead:
Calculate f(j) = k(i,j) + h(j) for each neighbor j of the current node i, where
h(j) is the current estimate of the shortest distance from j to goal nodes, and
k(i,j) is the link cost from 7 to j.

2. Update:
Update the estimate of node i as follows.

(i)  min £(j)

3. Action selection:
Move to the neighbor j that has the minimum f(j) value. Ties are broken
randomly.

One characteristic of this algorithm is that the agent determines the next action
in a constant time, and executes the action. Therefore, this algorithm is called an
on-line, real-time search algorithm.

In the LRTA*, the initial value of h must be optimistic, i.e., it must never
overestimate the true value. Namely, the condition k(i) < h*(¢) must be satisfied. If
the initial values satisfy this condition, h(i) will not be greater than the true value
h*(i) by updating.

We call a function that gives the initial values of h a heuristic function. For
example, in the 8-puzzle, we can use the number of mismatched tiles, or the sum
of the Manhattan distances (the sum of the horizontal and vertical distances) of
the mismatched tiles, for the heuristic function (the latter is more accurate). In
the maze problem, we can use the Manhattan distance to the goal as a heuristic
function.

A heuristic function is called admissible if it never overestimates. The above
examples satisfy this condition. If we cannot find any good heuristic function, we
can satisfy this condition by simply setting all estimates to 0.

In asynchronous dynamic programming, the initial values are arbitrary and can
be infinity. What makes this difference? In asynchronous dynamic programming,
it is assumed that the updating procedures are performed in all nodes. Therefore,
the h value of a node eventually converges to the true value, regardless of its initial
value. On the other hand, in LRTA*, the updating procedures are performed only
for the nodes that the agent actually visits. Therefore, if the initial value of node ¢
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is larger than the true value, it is possible that the agent never visits node i; thus,
h(i) will not be revised.
The following characteristic is known [19].

®= In a finite number of nodes with positive link costs, in which there exists a path
from every node to a goal node, and starting with non-negative admissible initial
estimates, LRTA* is complete, i.e., it will eventually reach a goal node.

Furthermore, since LRTA* never overestimates, it learns the optimal solutions
through repeated trials, i.e., if the initial estimates are admissible, then over
repeated problem solving trials, the values learned by LRTA* will eventually
converge to their actual distances along every optimal path to the goal node.

A sketch of the proof for completeness is given in the following. Let h*(i) be the
cost of the shortest path between state i and the goal state, and let h(i) be the
heuristic value of 7. First of all, for each state 4, h(i) < h*(i) always holds, since this
condition is true in the initial situation where all h values are admissible, meaning
that they never overestimate the actual cost, and this condition will not be violated
by updating. Define the heuristic error at a given point of the algorithm as the sum
of h*(i) — h(i) over all states i. Define a positive quantity called heuristic disparity,
as the sum of the heuristic error and the heuristic value h(7) of the current state i
of the problem solver. It is easy to show that in any move of the problem solver,
this quantity decreases. Since it cannot be negative, and if it ever reaches zero the
problem is solved, the algorithm must eventually terminate successfully. This proof
can be easily extended to cover the case where the goal is moving as well. See [11]
for more details.

Now, the convergence of LRTA* is proven as follows. Define the excess cost at
each trial as the difference between the cost of actual moves of the problem solver
and the cost of moves along the shortest path. It can be shown that the sum of the
excess costs over repeated trials never exceeds the initial heuristic error. Therefore,
the problem solver eventually moves along the shortest path. It is said that h(i)
is correct if h(i) = h*(i). If the problem solver on the shortest path moves from
state ¢ to the neighboring state j and h(j) is correct, h(i) will be correct after
updating. Since the h values of goal states are always correct, and the problem
solver eventually moves only along the shortest path, h(i) will eventually converge
to the true value h*(¢). The details are given in [33].

4.3.4 Real-Time A*

Real-time A* (RTA*) updates the value of h(i) in a different way from LRTA*. In
the second step of RTA*, instead of setting h(i) to the smallest value of f(j) for all
neighbors j, the second smallest value is assigned to h(j). Thus, RTA* learns more
efficiently than LRTA*, but can overestimate heuristic costs. The RTA* algorithm is
shown below. Note that secondmin represents the function that returns the second
smallest, value.
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1.  Lookahead:
Calculate f(j) = k(i, j) + h(j) for each neighbor j of the current state i, where
h(7) is the current lower bound of the actual cost from j to the goal state, and
k(i,7) is the edge cost from i to j.

2. Consistency maintenance:
Update the lower bound of state i as follows.

h(i) + secondmin; f ()

3. Action selection:
Move to the neighbor j that has the minimum f(j) value. Ties are broken
randomly.

Similar to LRTA*, the following characteristic is known [19].

= In a finite problem space with positive edge costs, in which there exists a path
from every state to the goal, and starting with non-negative admissible initial
heuristic values, RTA* is complete in the sense that it will eventually reach the
goal.

Since the second smallest values are always maintained, RTA* can make locally
optimal decisions in a tree problem space, i.e., each move made by RTA* is along
a path whose estimated cost toward the goal is minimum based on the already-
obtained information. However, this result cannot be extended to cover general
graphs with cycles.

4.3.5 Moving Target Search

Heuristic search algorithms assume that the goal state is fixed and does not change
during the course of the search. For example, in the problem of a robot navigating
from its current location to a desired goal location, it is assumed that the goal
location remains stationary. In this subsection, we relax this assumption, and allow
the goal to change during the search. In the robot example, instead of moving to
a particular fixed location, the robot’s task may be to reach another robot which
is in fact moving as well. The target robot may cooperatively try to reach the
problem solving robot, actively avoid the problem solving robot, or independently
move around. There is no assumption that the target robot will eventually stop,
but the goal is achieved when the position of the problem solving robot and the
position of the target robot coincide. In order to guarantee success in this task, the
problem solver must be able to move faster than the target. Otherwise, the target
could evade the problem solver indefinitely, even in a finite problem space, merely
by avoiding being trapped in a dead-end path.

We now present the Moving Target Search (MTS) algorithm, which is a gen-
eralization of LRTA* to the case where the target can move. MTS must acquire
heuristic information for each target location. Thus, MTS maintains a matrix of
heuristic values, representing the function h(z,y) for all pairs of states x and y.
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Conceptually, all heuristic values are read from this matrix, which is initialized to
the values returned by the static evaluation function. Over the course of the search,
these heuristic values are updated to improve their accuracy. In practice, however,
we only store those values that differ from their static values. Thus, even though
the complete matrix may be very large, it is typically quite sparse.

There are two different events that occur in the algorithm: a move of the problem
solver, and a move of the target, each of which may be accompanied by the updating
of a heuristic value. We assume that the problem solver and the target move
alternately, and can each traverse at most one edge in a single move. The problem
solver has no control over the movements of the target, and no knowledge to allow it
to predict, even probabilistically, the motion of the target. The task is accomplished
when the problem solver and the target occupy the same node. In the description
below, x; and z; are the current and neighboring positions of the problem solver,
and y; and y; are the current and neighboring positions of the target. To simplify
the following discussions, we assume that all edges in the graph have unit cost.

When the problem solver moves:

1. Calculate h(z;,y;) for each neighbor z; of z;.

2. Update the value of h(z;,y;) as follows:

h(zs,y:)
h(z;,y; max
(@03:) & { ming {h(z;,y:) + 1} }

3. Move to the neighbor z; with the minimum h(z;,y;), i.e., assign the value of
x; to x;. Ties are broken randomly.
When the target moves:
1. Calculate h(z;,y;) for the target’s new position y;.

2. Update the value of h(z;,y;) as follows:

- o h(z,y:)
h(zi, yi) { h(zi,y;) — 1 }

3.  Reflect the target’s new position as the new goal of the problem solver, i.e.,
assign the value of y; to y;.

A problem solver executing MTS is guaranteed to eventually reach the target.
The following characteristic is known [11]. The proof is obtained by extending the
one for LRTA*.

®= In a finite problem space with positive edge costs, in which there exists a path
from every state to the goal state, starting with non-negative admissible initial
heuristic values, and allowing motion of either a problem solver or the target
along any edge in either direction with unit cost, the problem solver executing
MTS will eventually reach the target, if the target periodically skips moves.
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[0 The initial positions of the problem solver and the target.
B The final position of the problem solver reaching the target.

Figure 4.12 Sample Tracks of MTS.

An interesting target behavior is obtained by allowing a human user to indirectly
control the motion of the target. Figure 4.12 shows the experimental setup along
with sample tracks of the target (controlled by a human user) and problem solver
(controlled by MTS) with manually placed obstacles. The initial positions of the
problem solver and the target are represented by white rectangles, while their final
positions are denoted by black rectangles. In Figure 4.12 (a), the user’s task is to
avoid the problem solver, which is executing MTS, for as long as possible, while in
Figure 4.12 (b), the user’s task is to meet the problem solver as quickly as possible.
We can observe that if one is trying to avoid a faster pursuer as long as possible,
the best strategy is not to run away, but to hide behind obstacles. The pursuer then
reaches the opposite side of obstacles, and moves back and forth in confusion.

4.3.6 Real-Time Bidirectional Search

Moving target search enables problem solvers to adapt to changing goals. This
allows us to investigate various organizations for problem solving agents. Suppose
there are two robots trying to meet in a fairly complex maze: one is starting from the
entrance and the other from the exit. Each of the robots always knows its current
location in the maze, and can communicate with the other robot; thus, each robot
always knows its goal location. Even though the robots do not have a map of the
maze, they can gather information around them through various sensors.

For further sensing, however, the robots are required to physically move (as
opposed to state expansion): planning and execution must be interleaved. In such a
situation, how should the robots behave to efficiently meet with each other? Should
they negotiate their actions, or make decisions independently? Is the two-robot
organization really superior to a single robot one?

All previous research on bidirectional search focused on offline search [29] [5].
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In RTBS, however, two problem solvers starting from the initial and goal states
physically move toward each other. As a result, unlike the offline bidirectional
search, the coordination cost is expected to be limited within some constant time.
Since the planning time is also limited, the moves of the two problem solvers may
be inefficient.

In RTBS, the following steps are repeatedly executed until the two problem
solvers meet in the problem space.

1. Control strategy:
Select a forward (Step2) or backward move (Step3).

2. Forward move:
The problem solver starting from the initial state (i.e., the forward problem
solver) moves toward the problem solver starting from the goal state.

3. Backward move:
The problem solver starting from the goal state (i.e., the backward problem
solver) moves toward the problem solver starting from the initial state.

RTBS algorithms can be classified into the following two categories depending on
the autonomy of the problem solvers. One is called centralized RTBS where the best
action is selected from among all possible moves of the two problem solvers, and the
other is called decoupled RTBS where the two problem solvers independently make
their own decisions. Let us take an n-puzzle example. The real-time unidirectional
search algorithm utilizes a single game board, and interleaves both planning and
execution; it evaluates all possible actions at a current puzzle state and physically
performs the best action (slides one of the movable tiles). On the other hand, the
RTBS algorithm utilizes two game boards. At the beginning, one board indicates
the initial state and the other indicates the goal state. What is pursued in this case
is to equalize the two puzzle states. Centralized RTBS behaves as if one person
operates both game boards, while decoupled RTBS behaves as if each of two people
operates his/her own game board independently.

In centralized RTBS, the control strategy selects the best action from among all
of the possible forward and backward moves to minimize the estimated distance
to the goal state. Two centralized RTBS algorithms can be implemented, which
are based on LRTA* and RTA*, respectively. In decoupled RTBS, the control
strategy merely selects the forward or backward problem solver alternately. As
a result, each problem solver independently makes decisions based on its own
heuristic information. MTS can be used for both forward and backward moves
for implementing decoupled RTBS.

The evaluation results show that, in clear situations, (i.e., heuristic functions
return accurate values), decoupled RTBS performs better than centralized RTBS,
while in uncertain situations (i.e., heuristic functions return inaccurate values),
the latter becomes more efficient. Surprisingly enough, compared to real-time
unidirectional search, RTBS dramatically reduces the number of moves for 15- and
24-puzzles, and even solves larger games such as 35- 48- and 63- puzzles. On the
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other hand, it increases the number of moves for randomly generated mazes: the
number of moves for centralized RTBS is around 1/2 in 15-puzzles and 1/6 in 24-
puzzles that for real-time unidirectional search; In mazes, however, as the number
of obstacles increases, the number of moves for RTBS is roughly double that for
unidirectional search [12].

Why is RTBS efficient for n-puzzles but not for mazes? The key to understanding
the real-time bidirectional search performance is to view that RTBS algorithms
solve a totally different problem from unidirectional search, i.e., the difference
between real-time unidirectional search and bidirectional search is not the number
of problem solvers, but their problem spaces. Let x and y be the locations of two
problem solvers. We call a pair of locations (z,y) a p-state, and the problem space
consisting of p-states a combined problem space. When the number of states in
the original problem space is n, the number of p-states in the combined problem
space becomes n?. Let i and g be the initial and goal states; then (i,g) becomes
the initial p-state in the combined problem space. The goal p-state requires both
problem solvers to share the same location. Thus, the goal p-state in the combined
problem space is not unique, i.e., when there are n locations, there are n goal p-
states. Each state transition in the combined problem space corresponds to a move
by one of the problem solvers. Thus, the branching factor in the combined problem
space is the sum of the branching factors of the two problem solvers.

Centralized RTBS can be naturally explained by using a combined problem space.
In decoupled RTBS, two problem solvers independently make their own decisions
and alternately move toward the other problem solver. We can view, however, that
even in decoupled RTBS, the two problem solvers move in a combined problem
space. Each problem solver selects the best action from possible moves, but does
not examine the moves of the other problem solver. Thus, the selected action might
not be the best among the possible moves of the two problem solvers.

The performance of real-time search is sensitive to the topography of the problem
space, especially to heuristic depressions, i.e., a set of connected states with heuristic
values less than or equal to those of the set of immediate and completely surrounding
states. This is because, in real-time search, erroneous decisions seriously affect the
consequent problem solving behavior. Heuristic depressions in the original problem
space have been observed to become large and shallow in the combined problem
space. If the original heuristic depressions are deep, they become large and that
makes the problem harder to solve. If the original depressions are shallow, they
become very shallow and this makes the problem easier to solve. Based on the above
observation, we now have a better understanding of real-time bidirectional search:
in n-puzzles, where heuristic depressions are shallow, the performance increases
significantly, while in mazes, where deep heuristic depressions exist, the performance
seriously decreases.

Let us revisit the example at the beginning of this section. The two robots first
make decisions independently to move toward each other. However, this method
hardly solves the problem. To overcome this inefficiency, the robots then introduce
centralized decision making to choose the appropriate robot to move next. They are
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going to believe that two is better than one, because a two-robot organization has
more freedom for selecting actions; better actions can be selected through sufficient
coordination. However, the result appears miserable. The robots are not aware of
the changes that have occurred in their problem space.

4.3.7 Real-Time Multiagent Search

Even if the number of agents is two, RTBS is not the only way for organizing
problem solvers. Another possible way is to have both problem solvers start from
the initial state and move toward the goal state. In the latter case, it is natural
to adopt the original problem space. This means that the selection of the problem
solving organization is the selection of the problem space, which determines the
baseline of the organizational efficiency; once a difficult problem space is selected,
the local coordination among the problem solvers hardly overcomes the deficit.

If there exist multiple agents, how can these agents cooperatively solve a problem?
Again, the key issue is to select an appropriate organization for the agents. Since
the number of possible organizations is quite large, we start with the most simple
organization: the multiple agents share the same problem space with a single fixed
goal. Each agent executes the LRTA* algorithm independently, but they share the
updated h values (this algorithm is called multiagent LRTA*). In this case, when
one of the agents reaches the goal, the objective of the agents as a whole is satisfied.
How efficient is this particular organization? Two different effects are observed as
follows:

1.  Effects of sharing experiences among agents:
As the execution order of the local computations of processes is arbitrary
in asynchronous dynamic programming, the LRTA* algorithm inherits this
property. Although the agents start from the same initial node, since ties are
broken randomly, the current nodes of the agents are gradually dispersed even
though the agents share / values. This algorithm is complete and the h values
will eventually converge to the true values, in the same way as the LRTA*.

2. Effects of autonomous decision making:

If there exists a critical choice in the problem, solving the problem with
multiple agents becomes a great advantage. Assume the maze problem shown
in Figure 4.13. If an agent decides to go down at the first branching point, the
problem can be solved straightforwardly. On the other hand, if the agent goes
right, it will take a very long time before the agent returns to this point.

If the problem is solved by one agent, since ties are broken randomly, the
probability that the agent makes a correct decision is 1/2, so the problem can
be solved efficiently with the probability 0.5, but it may take a very long time
with the probability of 0.5. If the problem is solved by two agents, if one of the
agents goes down, the problem can be solved efficiently. The probability that
a solution can be obtained straightforwardly becomes 3/4 (i.e., 1-1/4, where
the probability that both agents go right is 1/4). If there exist k agents, the
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Figure 4.13 Example of a critical choice.

probability that a solution can be obtained straightforwardly becomes 1—1/2F.

By solving a problem with multiple agents concurrently, we can increase both
the efficiency and robustness. For further study on problem solving organizations,
there exist several typical example problems such as Tileworld [30] and the Pursuit
Game [2]. There are several techniques to create various organizations: explicitly
break down the goal into multiple subgoals which may change during the course
of problem solving; dynamically assign multiple subgoals to multiple agents; or
assign problem solving skills by allocating relevant operators to multiple agents.
Real-time search techniques will provide a solid basis for further study on problem
solving organizations in dynamic uncertain multiagent environments.

4.4 Two-Player Games
4.4.1 Formalization of Two-Player Games

For games like chess or checkers, we can describe the sequence of possible moves
using a tree. We call such a tree a game tree. Figure 4.14 shows a part of a game tree
for tic-tac-toe (noughts and crosses). There are two players; we call the player who
plays first the MAX player, and his opponent the MIN player. We assume MAX
marks crosses (x) and MIN marks circles (). This game tree is described from the
viewpoint of MAX. We call a node that shows MAX’s turn a MAX node, and a node
for MIN’s turn a MIN node. There is a unique node called a root node, representing
the initial state of the game. If a node n’ can be obtained by a single move from
a node n, we say n' is a child node of x, and n is a parent of n'. Furthermore, if a
node n' is obtained by a sequence of moves from a node n, we call n an ancestor
of n.

If we can generate a complete game tree, we can find a winning strategy, i.e.,
a strategy that guarantees a win for MAX regardless of how MIN plays, if such
a strategy exists. However, generating a complete game tree for a reasonably
complicated game is impossible. Therefore, instead of generating a complete game



192 Search Algorithms for Agents

A
N~

Figure 4.14 Example of a game tree.

tree, we need to find out a good move by creating only a reasonable portion of a
game tree.

4.4.2 Minimax Procedure

In the minimax procedure, we first generate a part of the game tree, evaluate the
merit of the nodes on the search frontier using a static evaluation function, then
use these values to estimate the merit of ancestor nodes. An evaluation function
returns a value for each node, where a node favorable to MAX has a large evaluation
value, while a node favorable to MIN has a small evaluation value. Therefore,
we can assume that MAX will choose the move that leads to the node with the
maximum evaluation value, while MIN will choose the move that leads to the node
with the minimum evaluation value. By using these assumptions, we can define the
evaluation value of each node recursively as follows.

= The evaluation value of a MAX node is equal to the maximum value of any of
its child nodes.

®  The evaluation value of a MIN node is equal to the minimum value of any of its
child nodes.

By backing up the evaluation values from frontier nodes to the root node, we can
obtain the evaluation value of the root node. MAX should choose a move that gives
the maximum evaluation value.
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Figure 4.15 Example of evaluation values obtained by the minimax procedure.

Figure 4.15 shows the evaluation values obtained using the minimax algorithm,
where nodes are generated by a search to depth 2 (symmetries are used to reduce
the number of nodes). We use the following evaluation function for frontier nodes:
(the number of complete rows, columns, or diagonals that are still open for MAX)
— (the number of complete rows, columns, or diagonals that are still open for MIN).
In this case, MAX chooses to place a X in the center.

4.4.3 Alpha-Beta Pruning

The alpha-beta pruning method is commonly used to speed up the minimax
procedure without any loss of information. This algorithm can prune a part of a
tree that cannot influence the evaluation value of the root node. More specifically,
for each node, the following value is recorded and updated.

« value: represents the lower bound of the evaluation value of a MAX node.

[ value: represents the upper bound of the evaluation value of a MIN node.

While visiting nodes in a game tree from the root node by a depth-first order to
a certain depth, these values are updated by the following rules.

= The a value of a MAX node is the maximum value of any of its child nodes
visited so far.
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= The 3 value of a MIN node is the minimum value of any of its child nodes visited
so far.

We can prune a part of the tree if one of the following conditions is satisfied.

a-cut: If the g value of a MIN node is smaller than or equal to the maximum «
value of its ancestor MAX nodes, we can use the current 8 value as the evaluation
value of the MIN node, and can prune a part of the search tree under the MIN
node. In other words, the MAX player never chooses a move that leads to the MIN
node, since there exists a better move for the MAX player.

f-cut: If the a value of a MAX node is larger than or equal to the minimum j
value of its ancestor MIN nodes, we can use the current « value as the evaluation
value of the MAX node, and can prune a part of the search tree under the MAX
node. In other words, the MIN player never chooses a move that leads to the MAX
node, since there exists a better move for the MIN player.

Figure 4.16 shows examples of these pruning actions. In this figure, a square
shows a MAX node, and a circle shows a MIN node. A number placed near each
node represents an « or § value. Also, x shows a pruning action. A pruning action
under a MAX node represents an a-cut, and that under a MIN node represents a
[-cut.

The effect of the alpha-beta pruning depends on the order in which the child nodes
are visited. If the algorithm first examines the nodes that will likely be chosen (i.e.,
MAX nodes with large a values, and MIN nodes with small 3 values), the effect of
the pruning becomes great. One popular approach for obtaining a good ordering is
to do an iterative deepening search, and use the backed-up values from one iteration
to determine the ordering of child nodes in the next iteration.

Figure 4.16 Example of alpha-beta pruning.
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4.5 Conclusions

In this chapter, we presented several search algorithms that will be useful for prob-
lem solving by multiple agents. For constraint satisfaction problems, we presented
the filtering algorithm, the hyper-resolution-based consistency algorithm, the asyn-
chronous backtracking algorithm, and the weak-commitment search algorithm. For
path-finding problems, we introduced asynchronous dynamic programming as the
basis for other algorithms; we then described the LRTA* algorithm, the RTA* al-
gorithm, the MTS algorithm, RTBS algorithms, and real-time multiagent search
algorithms as special cases of asynchronous dynamic programming. For two-player
games, we presented the basic minimax procedure, and alpha-beta pruning to speed
up the minimax procedure.

There are many articles on constraint satisfaction, path-finding, two-player
games, and search in general. Pearl’s book [28] is a good textbook for path-finding
and two-player games. Tsang’s textbook [35] on constraint satisfaction covers top-
ics from basic concepts to recent research results. Concise overviews of path-finding
can be found in [18, 20], and one for constraint satisfaction is in [26].

The first application problem of CSPs was a line labeling problem in vision
research. The filtering algorithm [36] was developed to solve this problem. The
notion of k-consistency was introduced by Freuder [9]. The hyper-resolution-based
consistency algorithm [6] was developed during the research of an assumption-
based truth maintenance system (ATMS). Forbus and de Kleer’s textbook [8]
covers ATMS and truth maintenance systems in general. Distributed CSPs and the
asynchronous backtracking algorithm were introduced in [39], and the asynchronous
weak-commitment search algorithm was described in [38]. An iterative improvement
search algorithm for distributed CSPs was presented in [40].

Dynamic programming and the principle of optimality were proposed by Bell-
man [3], and have been widely used in the area of combinatorial optimization and
control. Asynchronous dynamic programming [4] was initially developed for dis-
tributed /parallel processing in dynamic programming. The Learning Real-time A*
algorithm and its variant Real-time A* algorithm were presented in [19]. Barto et
al. [1] later clarified the relationship between asynchronous dynamic programming
and various learning algorithms such as the Learning Real-time A* algorithm and
Q-learning [37]. The multiagent real-time A* algorithm was proposed in [16], where
a path-finding problem is solved by multiple agents, each of which uses the Real-
time A* algorithm. Methods for improving the multiagent Real-time A* algorithm
by organizing these agents was presented in [15, 41].

Although real-time search provides an attractive framework for resource-bounded
problem solving, the behavior of the problem solver is not rational enough for au-
tonomous agents: the problem solver tends to perform superfluous actions before
attaining the goal; the problem solver cannot utilize and improve previous exper-
iments; the problem solver cannot adapt to the dynamically changing goals; and
the problem solver cannot cooperatively solve problems with other problem solvers.
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Various extensions of real-time search, including Moving Target Search and Real-
time Bidirectional Search, have been studied in recent years [31, 13, 14].

The idea of the minimax procedure using a static evaluation function was
proposed in [32]. The alpha-beta pruning method was discovered independently by
many of the early Al researchers [17]. Another approach for improving the efficiency
of the minimax procedure is to control the search procedure in a best-first fashion
[21]. Best-first minimax procedure always expands the leaf node which determines
the a value of the root node.

There are other DAI works that are concerned with search, which were not
covered in this chapter due to space limitations. Lesser [23] formalized various
aspects of cooperative problem solving as a search problem. Attempts to formalize
the negotiations among agents in real-life application problems were presented in
[7, 22, 34].

4.6 Exercises

1. [Level 1] Implement the A* and LRTA* algorithms to solve the 8-puzzle
problem. Compare the number of states expanded by each algorithm. Use the
sum of the Manhattan distance of each misplaced tile as the heuristic function.

2. [Level 1] Tmplement the filtering algorithm to solve graph-coloring problems.
Consider a graph structure in which the filtering algorithm can always tell
whether the problem has a solution or not without further trial-and-error
search.

3. [Level 1] Implement a game-tree search algorithm for tic-tac-toe, which in-
troduces the alpha-beta pruning method. Use the static evaluation function
described in this chapter. Increase the search depth and see how the strategy
of the MAX player changes.

4. [Level 2] Tmplement the asynchronous backtracking algorithm to solve the n-
queens problem. If you are not familiar with programming using multiprocess
and inter-process communications, you may use shared memories, and assume
that agents act sequentially in a round-robin order.

5. [Level 2] Implement the asynchronous weak-commitment algorithm to solve
the n-queens problem. Increase n and see how large you can make it to solve
the problem in a reasonable amount of time.

6.  [Level 2] In Moving Target Search, it has been observed that if one is trying to
avoid a faster pursuer as long as possible, the best strategy is not to run away,
but to hide behind obstacles. Explain how this phenomenon comes about.

7. [Level 8] When solving mazes by two problem solvers, there are at least two
possible organizations: One way is to have the two problem solvers start from
the initial and the goal states and meet in the middle of the problem space;
Another way is to have both problem solvers start from the initial state and
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move toward the goal state. Make a small maze and compare the efficiency of
the two organizations. Try to create original organizations that differ from the
given two organizations.

[Level 8] In the multiagent LRTA* algorithm, each agent chooses its action
independently without considering the actions nor the current states of other
agents. Improve the efficiency of the multiagent LRTA* algorithm by intro-
ducing coordination among the agents, i.e., agents coordinate their actions by
considering the actions and current states of other agents.

[Level 4] When a real-life problem is formalized as a CSP, it is often the
case that the problem is over-constrained. In such a case, we hope that the
algorithm will find an incomplete solution that satisfies most of the important
constraints, while violating some less important constraints [10]. One way
for representing the subjective importance of constraints is to introduce a
hierarchy of constraints, i.e., constraints are divided into several groups, such
as C1,C5,...,Cy. If all constraints cannot be satisfied, we will give up on
satisfying the constraints in Cj. If there exists no solution that satisfies all
constraints in C4,Cy,...,Cg—1, we will further give up on satisfying the
constraints in C_1, and so on. Develop an asynchronous search algorithm that
can find the best incomplete solution of a distributed CSP when a hierarchy
of constraints is defined.

[Level 4] The formalization of a two-player game can be generalized to an
n-player game [25], i.e., there exist n players, each of which takes turns
alternately. Rewrite the minimax procedure so that it works for n-player games.
Consider what kinds of pruning techniques can be applied.
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