Agent Oriented Software Engineering

Michael Winikoff and Lin Padgham

Chapter 15 of
Multiagent Systems
Edited by Gerhard Weiss

MIT Press, 2012

http://www.the-mas-book.info/

Introduction

» Agent Oriented Software Engineering
(AOSE) concerned with engineering
aspects of developing MAS.

* Focus on methodologies and tools

* This chapter aims to:

1. Give a sense for what an AOSE
methodology looks like.

2. Describe the current state of work in the
area of AOSE.

Methodology

* Methodology includes:

— overall process

— which produces design artefacts (“‘models”)

— notation used to capture the models

— techniques (i.e. how to do things — heuiristics)

— underlying concepts

— tool support very valuable, but not focus of chapter
 Activities follow typical development life cycle:

requirements, design, implementation, assurance,
maintenance

— ... but typically done iteratively, not sequentially (i.e.
not waterfall)

History of AOSE: Three Generations

1. mid to late 90s

— Examples: DESIRE, AAll,
MAS-CommonKADS, Gaia

— Generally briefly described
— Lacking tool support
— May not cover full life cycle

2. late 90s to early 00s

— Examples: MaSE, Tropos, MESSAGE,
Prometheus

— More detailed descriptions
— Tend to have tool support

Year

Methodologies

1995
1996
1999
2000
2001
2002
2003
2005
2007

DESIRE

AAIL, MAS-CommonKADS
MaSE

Gaia (v1), Tropos
MESSAGE, Prometheus
PASSI, INGENIAS

Gaia (v2)

ADEM

O-MaSE

— Tend to cover Requirements to Implementation

3. mid to late 00s
— Examples: PASSI, INGENIAS, ADEM

— Increased focus on UML and Model-Driven Development

— Tend to be more complex

Historical Observations

* Reduced focus on developing new
methodologies

* Reduction over time in number of actively
developed methodologies

e ... Increased focus on standardisation and
consolidation?

Agent Concepts

* Agents defined as having certain
properties

* Design agents with these properties
using supporting concepts

Property Supporting Concepts
Situated Action, Percept
Proactive & Autonomous Goal
Reactive Event
Social Message, Protocol ...

Agent Concepts

Design situated agents by modeling
interface with environment in terms of

actions and percepts

Design proactive and autonomous
agents using goals

Achieve reactivity using events

Agents interact with each other (social)
using messages and protocols

Example: Holonic Manufacturing

—— C buffer
Goal: Assemble “A”, “B” and “C” parts —

into a composite “ABC” part. B buffer ,

<:| A buffer i

robot1

(loads &
unloads)

robot2 jig 1 jig 2
(joins)

rotating table

Process for making an "ABC” part

S 2 A

9.

10.
11.
12.
13.

robot1 loads an A part into one of the jigs on the rotating table
robot1 loads a B part on top of it

the table rotates so the A and B parts are at robot2

robot2 joins the parts together, yielding an “AB” part

the table rotates back to robot1

if an AB part is required, robot1 unloads the part, else continue
robot1 moves the AB part to the flipper

the flipper flips the part over (“BA”) at the same time as robot1
loads a C part into the jig

robot1 loads the BA part on top of the C part

the table rotates

robot2 joins the C and BA parts, yielding a complete ABC part
the table is rotated, and

robot1 then unloads the finished part.

Actions and Percepts in the
Holonic Manufacturing Example

Robot1:

« percept: manufacture
(composite)

 |oad(part) into jig

* unload()

* moveToFlipper()

* moveFromFlipper()

Robot2:
* Join(jig): join the bottom
part to the top part

Flipper:

 flip() the item in the
flipper

Table:
 rotateTe(jig, position)

REQUIREMENTS

Requirements

Requirements concerned with defining the
required functionality of the system-to-be.
Commonly used activities:

— specifying instances of desired behaviour using
scenarios

— capturing system goals and their relationships

— defining the interface between the system-to-be
and its environment

These activities are typically done in parallel
In an iterative manner

Some methodologies define roles ...

Roles

« Coherent grouping of related goals, percepts, actions
« Example:

manager: this role is responsible for overall management of the
manufacturing process. It does not perform any actions.
pickAndPlacer: this role is responsible for moving parts in and
out of the jig when it is located on the East side of the table.
Aslsocz;ated actions are: load, moveToFlipper, moveFromFlipper,
unloa

fastener: this role is responsible for joining parts together.
Associated action: join.

transporter: this role is responsible for transporting items by
rotating the table. Associated action: rotateTo.

flipper: this role is responsible for flipping parts using the “flip”
action.

Requirements: Scenarios

« Similar to OO use
cases, but more G
details in some G
methodologies G

e Structure and format
varies G

Type
G

* Example (right) shows
goals and actions,
along with the roles 0

> >

> > >

> >

Scenario: manufacturePart(ABC)

Name

build2
decideParts
loadPart
load(A)
loadPart
load(B)
fastenParts
rotateTo(1,W)
join(1)
addPart
decideNext
flipOver
rotateTo(1,E)
moveToFlipper()
flip()

loadPart
load(C)
moveFromFlipper()
fastenParts
rotateTo(1,W)
join(1)
complete
assess
rotateTo(1,E)
unload()

Roles

manager, pickAndPlacer, fastener
manager

pickAndPlacer

pickAndPlacer

pickAndPlacer

pickAndPlacer

fastener, transporter

transporter

fastener

manager, pickAndPlacer, fastener
manager

manager

transporter

pickAndPlacer

flipper

pickAndPlacer

pickAndPlacer [in parallel with flip]
pickAndPlacer

fastener, transporter

transporter

fastener

manager

manager

transporter

pickAndPlacer

Requirements: Goals

Capture goals of system

Is complementary to scenario

— not specific to a given trace, but doesn’t capture
sequencing.

Extract initial goals from the scenario
Refine by asking “why?” (gives parent goal)
and “how?” (gives child goals)

Results in goal model, e.g. goal tree

— Some methodologies have richer notations
— Example (next slide) also shows actions

Example Goal Model

Key

A
o)
<
4 4

<load(X)> <join(jig)> <rotateTo(jig,pos)> <moveFromFlipper> <moveToFlipper> <flip> <unload>

Requirements: Environment

» Specify interface to environment in terms of
actions and percepts

* May be pre-determined by problem
— e.g. robot capabilities in Holonic Manufacturing

* Overlap exists between the three models
(scenarios, goals, environment interface).

* Hence each model influences the others ...

Variations on requirements

« Some methodologies have an early
requirements phase that captures the context
of the system-to-be in terms of stakeholders,
and their goals and dependencies.

» Capturing domain concepts (“ontology”) is

important — can use UML class diagrams,
Protege ...

« Some work has proposed richer

environmental models (e.g. chapters 2 and
13)

DESIGN

Design

* Design aims to define the overall structure
of the system by answering:

— What agent types exist, and what (roles and)
goals do they incorporate?

— What are the communication pathways
between agents?

— How do agents interact to achieve the
system’s goals?

Design

* Two key models:
— a static view of the system’s structure, and

— a model that captures the dynamic behaviour
of the system.

* Also capture shared data.

“What agent types exist?”

« Common technique is to consider grouping of
smaller “chunks” (e.g. roles), taking into
account:

— the degree of coupling between agents,

— the cohesiveness of agent types, and

— any other reasons for keeping “chunks” separate
(e.g. deployment hardware, security, privacy)

* No single “right” answer — technique is about
identifying tradeoff points.

“What agent types exist?”

In the Holonic Manufacturing example:
* Natural to have each robot be a separate

agent ...

... but assign pickAndPlacer and manager
roles to Robot1

Role

pickAndPlacer —

manager
transporter
fastener
flipper

VN

Agent Type Goals and Actions’

Robotl loadPart, load, unload,

moveloFlipper, moveFromFlipper
Robot1 decideParts, decideNext, flipOver, assess
Table rotatelo
Robot2 fastenParts, join

FlipperRobot flip italics = actions

System (static) structure

« Specified using System Overview Diagram
* First, derive goals, action and percept
assignment.

— Derived from the role-agent assignment: a
role’s goals, actions and percepts are
assigned to the agent that plays that role.

* Then consider communication ...

System Dynamics

« Captured using interaction protocols

* Process:
— Begin with scenarios

— Insert messages where communication is needed

(i.,e. when step N by agent A is followed by step
N+1 by a different agent)

— Generalise: “what else could happen here?”,
“what could go wrong?”
« Agent UML (AUML) sequence diagrams often
used for depicting interaction protocols.

Holonic Manufacturing Protocols

Top level protocol
shows manufacturing
Process:

* Initial loading of two
parts and joining them

* then repeatedly
adding a part and
fastening it

+ finally, unload the
result

ManufacturePart)

Robotl | | Robot2 | | Table | | FlipperRobot
T T T T
ref) Lock(R1,jigE)
| |
| |
load> I
| |
Ioe|1d> I :
: unl'pck ‘:
| | 1
| |
ref) Fasten
loop) |
ref) AddPart
ref) Fasten
ref) Lock(R1,jigE)
I

Y

|
unlock

Fasten Protocol

* Fasten protocol simply

Involves a request

(from Robot1 to Robot2) to fasten.
* Robot2 then locks the table, performs the

Join action, and informs

Robot1

Fasten

)

Robotl
|

Robot?2 Table
| |

fasten(jig)):
|

ref

J Lock(R2,jigW)

<joinbig)>

L fastened(jig) i unlock

AddPart Protocol

AddPart protocol shows:
* the table being locked

 then the existing part is
moved to the flipper

* then the new part is
loaded (and, optionally,
the old part is flipped at
the same time (“par”))

« and then the old part is
moved back

AddPart)

Robotl |
[

| Table |
I

|FlipperRobot
[

ref

) Lock(R1,jigE)

|
<moveToFlipper>
|

|
par |)

opti

J fIipRe:quest
|

<moveFromFlipper>
unlock

>

Note that showing actions in the protocol (e.g. “<load>") is
needed to show clearly what's going on.

Lock Protocol

Lock(ig))

« The Lock protocol is a o s
S|mp|e requeSt' loop until Iod:ked) i
response (“please | lock-at(ig, Pos)
lock™, “ok”) ... TR |

« ... extended to deal rablefocked] 4|

] " leg |
with failure (by I D p—
retrying), clse ;

« and with an optional ot EU |

. . ! <rotateTo(Jig,Pos)3}
rotation to the desired | :g
pOSItIOﬂ | locked-at :

System Overview Diagram

* Having developed the protocols, we can
now capture the system’s (static) structure
using a System Overview Diagram (next
slide)

» May also need to define shared data at
this point.

System Overview Diagram

<load(X)> K ey:
>manufacture< —> <moveToFlipper> <action>
Robot1
<moveFromFlipper> >percept<
<unload>
agent

‘ Message \

Table Robot2

! l !

<flip> <rotateTo(jig,pos)> <join(jig)>

DETAILED DESIGN

Detailed Design

Detailed design aims to specify the internal
structure of each agent, so that implementation
can be done.

Do this by starting with each agent’s interface
(messages sent/received, actions, percepts,
goals) and defining its internals.

To do this, need to know the target implementation
platform type

We consider two examples:

— A Belief-Desire-Intention (BDI) platform

— A design using a Finite State Machine (FSM) targeting
JADE

Example: Robot1

 We know that Robot1:

— participates in the protocols: AddPart, Lock,
Fasten

— has actions: load, unload, moveToFlipper,
moveFromFlipper

— receives percept manufacture
— has goals: loadPart, decideParts, decideNext,
flipOver
 What plans and internal events does Robot1
need to play its part?

BDI Platform Design

« BDI platforms define an agent in terms of a
collection of plans that are triggered by
events (or messages).

— Each event may trigger more than one plan —
which plan to use is determined by the plan’s
context condition

* To capture detailed design use an Agent
Overview Diagram for each agent type

— This shows plans, events, messages, percepts
and actions; and the relationships between them

Example: Initial Structure

« Start by creating a plan to handle the percept

* This plan then posts events corresponding to the
subgoals

« Each of these events needs a plan to handle it

PartPlan

>percept<

<action>

complete plan

build2Plan addPartPlan
Plan

Example: developing build2

* The build2Plan posts events corresponding to its
subgoals — loadPart simply becomes the action load

« Since the fastenParts subgoal is performed by Robot2,

instead of posting an internal event, send a message
(to Robot2)

* Also need to lock and unlock, so add these messages

addPartPlan

decideParts
Plan

Example: addPart and complete

« addPart has subgoals loadPart, fastenParts,
decideNext and flipOver — add them.

* add messages in line with the interaction
protocols

e subgoal “assess” is " T L
handled by a suitable <>
context condition on

build2Plan

the completePlan

decide

Example: final BDI design

* Check that all messages that Robot1 should
be able to send or receive are in the detailed
design
— sent: lock-at, fasten, flipRequest, unlock - all

present in design

— received messages missing: lockFailed, locked-
at, fastened, flipped — add, and ensure there is a
plan that deals with each incoming message.

» Use capability to encapsulate lock
management

Final BDI Design for Robot1

Key:

<>

>percept<

<action>

plan

message

>manufacture< mla;r;L:tfggzre fastened(jig)
continue
add
fasten(jig) Part
<load(X)> <moveFromFlipper>
build2Plan addPartPlan |<
<moveToFlipper>
<unload> v
decide T complete
Parts Plan
decide
N
decideParts ext
Plan
4 flipRequest
decideNext flipOverPlan
. Plan
[lockCapability] A —~—
ippe
lock-at

(jig,pos)

Approach Il: FSM

* Derive internal process for Robot1 by
identifying states of interaction (gaps
between messages in the protocols)
— messages are transitions between states

— compress interactions that don’t involve
Robot1 (e.g. Robot2 and Table locking the
table in the Fasten protocol)

Final FSM Design for Robot1

receive(manufacture(part))
receive(lockFailed)
¥ |
\ . receive(locked-at)
Wait

x J/send(lock-at(Jig,Pos))

A
receive(fastened(jig)) V

CmoveToFIipper)
C Wait) ¥ (unload)
x C load(A))
l /send(flipRequest)

)(oy Geoe) Com)

receive(flipped)

C D ®

/send(unlock) l

()

/send(fasten(jig)

Implementation

Mapping detailed design to implementation
generally done manually

Some design tools can generate skeleton
code in an agent-oriented programming
language

Some work on round-trip engineering exists

Some work has been done on model driven
development of agent systems
— implementation generated from design

— ... but design expands to include additional
information to make this possible ...

Assurance

» Support for this is less well developed than
support for “core” activities (requirements,
design, detailed design).

* Much of the work in testing and debugging
uses information created during design

— e.g. using interaction protocols to monitor
system execution

Testing and Debugging

» Testing agents is hard: concurrent
systems, with goal-directed flexible
behaviour ...

» Testing takes places at different levels:

units, modules, integration, system, and
acceptance

» Testing has different aspects: test case

design, execution, and checking of test
results.

Testing and Debugging (2)

* Most well developed contemporary
methodologies provide some support for
automated execution of tests, and
checking test results.

... but test case generation is usually
manual

Testing and Debugging (3)

* Tropos has a tool (eCAT) that provides
support for test case generation

— This uses ontologies to generate message
content

* Prometheus has work on test case
generation

* Butis a given set of tests adequate?

Testing Adequacy

* Given the complexity of agent systems, a
set of tests may not be adequate

* There has been some work on adapting
existing notion of code coverage to agents

« But this work is not yet used in agent
testing tools

Formal Methods

The difficulty of testing agent systems has
motivated the development of formal methods

Formal methods use mathematical techniques to

prove that a system is correct (with respect to its
formalised specification)

Much of the work uses model checking, where an

(often abstract) model of the system is
systematically checked against a specification

But current state-of-the-art is still limited to very
small programs (e.g. six line contract net with
three agents)

Software Maintenance

* Once software has been deployed, it is
subject to further change, such as:
— adapting to changes in its environment
— adding new functionality

* Only one piece of work that has looked at
maintenance of agent systems

 Dam et al. focused on change propagation in
design models: given a change to a design
model, what other changes are needed to
restore consistency of the model?

Comparing Methodologies

In the early days of the field there were many
methodologies

This prompted work (around 2001-2003) on comparing
methodologies

Typical approach was feature based:

— Define a list of features of interest

— Assess each methodology against each feature, resulting
In a large table

Unfortunately this approach suffers from subjectivity

— ... iIn some cases even the authors of a methodology didn’t
agree on how to rate their methodology on given criteria!

Conclusions

 Areas for further research:
— Understanding the benefits of the agent paradigm
— Designing flexible interactions

— Extending methodologies to deal with systems

- ... that have complex and dynamic organisational
structure

+ ... that have many simple agents with emergent
behaviour

« ... that are an open society of agents
— Techniques for assurance of agent systems

Conclusions

» Areas for further work (not research):

— Standardisation of methodologies

« Reduce unnecessary differences between
methodologies

* Enable reuse of tool development, rather than
duplicated effort

« One approach that has been proposed is method
engineering
— Integration of agent practices, standards and
tools with mainstream

