i} U Claysthal PUC
Chapter 13:
Programming

Multi-Agent Systems

Rafael H. Bordini and Jiirgen Dix

Multi-Agent Systems, edited by Gerhard Weiss
MIT Press, May 2012

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 1

kil TU Clausthal PUC

Time

Duration: The course can be divided into 4 lectures a 60
minutes:

Course type

Level: advanced
Prerequisites:

Course website

http://mitpress.mit.edu/multiagentsystems

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 2

e} TU Claysthal h

Course Overview

The course can be divided into 4 lectures a 60 minutes:
Lec. 1: History and the MAOP Paradigm
Lec. 2: Examples of Programming Languages
Lec. 3: Organisation and Environment Programming
Lec. 4: An Example in JaCoMo

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 3

U Clausthal PUC
Reading Material |

[§ Rafael Bordini and Jiirgen Dix (2012).
Chapter 13: Programming Multi-agent Systems.
In G. Weiss (Ed.), Multiagent Systems, MIT Press.

[§ Rafael H. Bordini, Mehdi Dastani, Jirgen Dix, and Amal El
Fallah-Seghrouchni, editors.
Multi-agent Programming: Languages, Tools and Applications.
Springer, 2009.

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 4

e’ TU Clausthal PUC
Reading Material Il

[§ Rafael H. Bordini, Mehdi Dastani, Jirgen Dix, and Amal El
Fallah-Seghrouchni, editors,
Multi-agent Programming: Languages, Platforms and
Applications.
Springer, 2005.

[§ Rafael H. Bordini, Jomi F. Hiibner, and Michael Wooldridge.
Programming Multi-Agent Systems in AgentSpeak Using Jason.
Wiley, 2007.

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 5

il TU Clausthal PUC
Outline

History and the MAOP Paradigm

Examples of Programming Languages
Organisation and Environment Programming
An Example in JACAMO

References

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 6

MW TU Clallsthal 1 History and the MAOP Paradigm PUC

1. History and the MAOP Paradigm

History and the MAOP Paradigm
m Agent Level
m Environment Level
m Social Level

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 7

@Kﬂ TU Clausthal 1 History and the MAOP Paradigm PUC

Clausthal University of Technology

AgentO

m Agent-oriented programming started with Shoham in
1993.

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 8

@KM TU Clausthal 1 History and the MAOP Paradigm PUC

AgentO

m Agent-oriented programming started with Shoham in
1993.

m While the first decade saw mainly theoretical
approaches, the creation of the ProMAS and DALT
workshop series (both held with AAMAS since 2003)
and related activity helped to change the picture.

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 8

@KW TU Clallsthal 1 History and the MAOP Paradigm PUC

AgentO

m Agent-oriented programming started with Shoham in
1993.

m While the first decade saw mainly theoretical
approaches, the creation of the ProMAS and DALT
workshop series (both held with AAMAS since 2003)
and related activity helped to change the picture.

m The first agent programming languages were mostly
concerned with programming individual agents: no
abstractions covering the social and environmental
dimensions.

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 8

@H‘W TU Clausthal 1 History and the MAOP Paradigm PUC

Mature Languages

m Usable IDEs and debugging tools (in particular tools
to inspect the state of an agent or an organisation).

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 9

@U‘H TU Clausthal 1 History and the MAOP Paradigm PUC

Mature Languages

m Usable IDEs and debugging tools (in particular tools
to inspect the state of an agent or an organisation).

m Still a long way to go compared to the best tools used
for object-oriented programming.

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 9

@KM TU Clausthal 1 History and the MAOP Paradigm PUC

Mature Languages

m Usable IDEs and debugging tools (in particular tools
to inspect the state of an agent or an organisation).

m Still a long way to go compared to the best tools used
for object-oriented programming.

m Inspiration comes from reactive planning
systems [Georgeff and Lansky, 1987] and the societal
view of computing.

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 9

@KW TU Clallsthal 1 History and the MAOP Paradigm PUC

Ongoing research

m Proceedings of ProMAS [Collier et al., 2011],
m proceedings of DALT [Omicini et al., 2011],
m CLIMA, AAMAS (as well as the main Al conferences),

m LADS [Dastani et al., 2010] and various other
workshops.

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 10

@KM TU Clausthal 1 History and the MAOP Paradigm PUC

Survey papers

m [Fisher et al., 2007, Bordini et al., 2006,
Mascardi et al., 2004, Dastani and Gomez-Sanz, 2005]

m [Bordini et al., 2011, Bordini et al., 2007a].

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 1

@KM TU Clausthal 1 History and the MAOP Paradigm PUC

Reacting to Events x Long-Term Goals

m Auonomous agents have to be attentive to changes
and react to them appropriately as former goals may
not succeed.

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 12

@KM TU Clausthal 1 History and the MAOP Paradigm PUC

Reacting to Events x Long-Term Goals

m Auonomous agents have to be attentive to changes
and react to them appropriately as former goals may
not succeed.

m Long-term goals have to be taken into account.

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 12

@KM TU Clausthal 1 History and the MAOP Paradigm PUC

Reacting to Events x Long-Term Goals

m Auonomous agents have to be attentive to changes
and react to them appropriately as former goals may
not succeed.

m Long-term goals have to be taken into account.

m In highly dynamic environments, not reacting to
events means losing opportunities for the agent to
achieve what is expected of it.

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 12

@KW AllJmCla‘L‘lS‘thal 1 History and the MAOP Paradigm PUC
Courses of Action Depend on
Circumstances

m Agents will be constantly deciding which courses of
action to take in order to react to events.

R. Bordini, |]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 13

Q?IKM (lum(:la‘t‘ls‘t‘h'al 1 History and the MAOP Paradigm PUC
Courses of Action Depend on
Circumstances

m Agents will be constantly deciding which courses of
action to take in order to react to events.

m This decision depends on the current circumstances
(of the agent, other agents, the environment, etc.).

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 13

@U‘H (IU‘W(:la‘L‘lS‘th'al 1 History and the MAOP Paradigm PUC
Courses of Action Depend on
Circumstances

m Agents will be constantly deciding which courses of
action to take in order to react to events.

m This decision depends on the current circumstances
(of the agent, other agents, the environment, etc.).

m The agent will use its most up-to-date information
about the state of itself, other agents, and the
environment in order to decide at runtime what needs
to be done.

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 13

@U‘H (lum(jla‘L‘lS‘t‘h'al 1 History and the MAOP Paradigm PUC
Choosing Courses of Action only When

About to Act

m Due to the highly dynamic nature, the course of action
to be used should not be decided too early: things
might have changed by the time the agent is actually
about to act.

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 14

-‘IL‘JHCla‘L‘lS‘th‘al 1 History and the MAOP Paradigm PUC
Choosing Courses of Action only When
About to Act

m Due to the highly dynamic nature, the course of action
to be used should not be decided too early: things
might have changed by the time the agent is actually
about to act.

m Agent languages often use partially instantiated plans
so that not only details of a plan but the particular
(sub)plan to be used for each (sub)goal is only chosen
when the agent is about to act on achieving a particular
goal.

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 14

Q?IKM (lum(jla‘L‘lS‘t‘h'al 1 History and the MAOP Paradigm PUC
Dealing with Plan Failure

m Even delaying the decision on particular courses of
action might not be enough to ensure that the agent
has chosen a suitable course of action in a dynamic
environment.

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 15

@U‘H TU Clausthal 1 History and the MAOP Paradigm PUC

Dealing with Plan Failure

m Even delaying the decision on particular courses of
action might not be enough to ensure that the agent
has chosen a suitable course of action in a dynamic
environment.

m While executing a plan, the agent may realise a failure
has occurred, so agent languages still need to provide
mechanisms to deal with plan failure.

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 15

@H‘W TU Clausthal 1 History and the MAOP Paradigm PUC

Clausthal University o

Rational Behaviour

m Agent applications will require that agents behave
rationally.

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 16

@Ku TU Clausthal 1 History and the MAOP Paradigm PUC
Rational Behaviour

m Agent applications will require that agents behave
rationally.

m BDI literature [Rao and Georgeff, 1995] has pointed to
very concrete aspects of rationality.

R. Bordini, |]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 16

@Kﬂ ‘IL‘J“Cla‘L‘lS‘tbal 1 History and the MAOP Paradigm PUC
Rational Behaviour

m Agent applications will require that agents behave
rationally.

m BDI literature [Rao and Georgeff, 1995] has pointed to
very concrete aspects of rationality.

m If an agent has an infention (i.e. is committed to the
goal of achieving a particular state of affairs) we expect
it to reason about how to achieve that intention.

R. Bordini, |]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 16

MW lu “Clal‘ls‘thal 1 History and the MAOP Paradigm PUC
Rational Behaviour

m Agent applications will require that agents behave
rationally.

m BDI literature [Rao and Georgeff, 1995] has pointed to
very concrete aspects of rationality.

m If an agent has an infention (i.e. is committed to the
goal of achieving a particular state of affairs) we expect
it to reason about how to achieve that intention.

m We do not expect the agent to give up before the
intention is believed to have been effectively achieved,
unless there is good reason to believe it will not be
possible to achieve it at all.

R. Bordini, |]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 16

Q?IKM quw(:la}‘ls‘t‘h'al 1 History and the MAOP Paradigm PUC
Social Ability — High-Level
Communication, Organisation

m Essential feature: some tasks are only possible if agents
intferact.

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 17

Q?IKM (lum(jla‘L‘lS‘t‘h'al 1 History and the MAOP Paradigm PUC
Social Ability — High-Level
Communication, Organisation

m Essential feature: some tasks are only possible if agents
intferact.

m In order to cooperate or to coordinate their action,
agents typically use a high-level form of
communication based on the idea of
speech-acts [Austin, 1962, Searle, 1969].

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 17

(IU‘W(:la‘L‘lS‘th'al 1 History and the MAOP Paradigm PUC
Social Ability — High-Level
Communication, Organisation

m Essential feature: some tasks are only possible if agents
intferact.

m In order to cooperate or to coordinate their action,
agents typically use a high-level form of
communication based on the idea of
speech-acts [Austin, 1962, Searle, 1969].

m Agents can be programmed to take part in an agent
organisation all within the context of multiagent
oriented programming.

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 17

@Ku TU Clausthal 1 History and the MAOP Paradigm PUC

Code Modification at Runtime

m Platforms for MAP allow for simple changing the system
program at runtime.

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 18

@Ku TU Clausthal 1 History and the MAOP Paradigm PUC

Code Modification at Runtime

m Platforms for MAP allow for simple changing the system
program at runtime.

m Plan libraries can be changed at runtime, and so does
the behaviour of the agent.

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 18

@KW ‘IL‘JHCla‘L‘lS‘th‘al 1 History and the MAOP Paradigm PUC
Code Modification at Runtime

m Platforms for MAP allow for simple changing the system
program at runtime.

m Plan libraries can be changed at runtime, and so does
the behaviour of the agent.

m Often this is done through speech-act based
communication: not only other agents but humans as
well can communicate new plans (i.e. know-how or
behaviour) for the agents.

m In some platforms for agent organisations the
specification of the social structure and overall social
plan and norms that agents ought to follow can be
changed on-the-fly.

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 18

@Kﬂ TU Clausthal 1 History and the MAOP Paradigm PUC

Clausthal University of Technology 1.1 Agent Level

1.1 Agent Level

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 19

@H‘W TU Clausthal 1 History and the MAOP Paradigm PUC

1.1 Agent Level

General Abstractions

m MAOP provides abstractions to facilitate the
development of software that is both autonomous and
social.

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 20

1.1 Agent Level

General Abstractions

m MAOP provides abstractions to facilitate the
development of software that is both autonomous and
social.

m belief is an abstraction of the agent’s informational
state .

@H‘W TU Clausthal 1 History and the MAOP Paradigm PUC

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 20

@KM lu‘Cla‘L‘lS‘t‘hal 115{5:\%?”?125? MAOP Paradigm PUC
General Abstractions

m MAOP provides abstractions to facilitate the
development of software that is both autonomous and
social.

m belief is an abstraction of the agent’s informational
state .

m Agents need to be able not just to represent beliefs but
to continuously update them.

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 20

@KM TU Clausthal 1 History and the MAOP Paradigm PUC

1.1 Agent Level

General Abstractions

m MAOP provides abstractions to facilitate the
development of software that is both autonomous and
social.

m belief is an abstraction of the agent’s informational
state .

m Agents need to be able not just to represent beliefs but
to continuously update them.

m Perhaps the most important abstraction in agent
programming is that of a goal.

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 20

@KM (IU‘W(:la‘L‘lS‘t‘h'al 11}j|1is;<;2/na:rl<gvtge MAOP Paradigm PUC
General Abstractions

m MAOP provides abstractions to facilitate the
development of software that is both autonomous and
social.

m belief is an abstraction of the agent’s informational
state .

m Agents need to be able not just to represent beliefs but
to continuously update them.

m Perhaps the most important abstraction in agent
programming is that of a goal.

m A goal is typically represented as a property that is
currently not believed to be true and that will lead the
agent into action in order to make that property true

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 20

@U‘H TU Clausthal 1 History and the MAOP Paradigm PUC

1.1 Agent Level

Declarative achievement goal

m The agent wishes to bring about a certain state of
affairs which it currently believes not to hold and is
willing to commit itself to acting so as to bring about
such state of affairs: Declarative achievement goal.

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 21

@KW TU Clallsthal 1 History and the MAOP Paradigm PUC

1.1 Agent Level

Declarative achievement goal

m The agent wishes to bring about a certain state of
affairs which it currently believes not to hold and is
willing to commit itself to acting so as to bring about
such state of affairs: Declarative achievement goal.

m Such goals facilitate the programming of software that
can appear to be pro-active as well as recovering from
failure due to a quickly changing environment.

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 21

MW TU Clallsthal 1 History and the MAOP Paradigm PUC

1.1 Agent Level

Declarative achievement goal

m The agent wishes to bring about a certain state of
affairs which it currently believes not to hold and is
willing to commit itself to acting so as to bring about
such state of affairs: Declarative achievement goal.

m Such goals facilitate the programming of software that
can appear to be pro-active as well as recovering from
failure due to a quickly changing environment.

m One of the first comprehensive typologies for goals in
agent programming was published
in [Braubach et al., 2004], with much work following it,
in [van Riemsdijk et al., 2005].

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 21

@KM TU Clausthal 1 History and the MAOP Paradigm PUC

1.1 Agent Level

Plans and Intentions

m A planis a course of action that under specific
circumstances might help the agent handle a particular
event (achieving a long-term goal or reacting to
changes in beliefs, for example about the environment).

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 22

@KW TU Clallsthal 1 History and the MAOP Paradigm PUC

1.1 Agent Level

Plans and Intentions

m A planis a course of action that under specific
circumstances might help the agent handle a particular
event (achieving a long-term goal or reacting to
changes in beliefs, for example about the environment).

m An intention is an instance of a plan that has been
chosen to handle a particular event and has been
partially instantiated with information about the event.

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 22

@KW TU Clallsthal 1 History and the MAOP Paradigm PUC

1.1 Agent Level

Plans and Intentions

m A planis a course of action that under specific
circumstances might help the agent handle a particular
event (achieving a long-term goal or reacting to
changes in beliefs, for example about the environment).

m An intention is an instance of a plan that has been
chosen to handle a particular event and has been
partially instantiated with information about the event.

m This intended means may contain further goals to
achieve.

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 22

MW lu‘Clal‘lS‘thal 1&15}2(;2/&1&[39 MAOP Paradigm PUC
Plans and Intentions

m A planis a course of action that under specific
circumstances might help the agent handle a particular
event (achieving a long-term goal or reacting to
changes in beliefs, for example about the environment).

m An intention is an instance of a plan that has been
chosen to handle a particular event and has been
partially instantiated with information about the event.

m This intended means may contain further goals to
achieve.

m The agent uses information as up-to-date as possible
when committing to particular means to achieve its
goals.

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 22

@Hf% TU Clausthal 1 History and the MAOP Paradigm PUC

1.2 Environment Level
Clausthal University of Technology

1.2 Environment Level

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 23

&Mﬂ lausthal 1 History and the MAOP Paradigm PUC

4) H S eanons 1.2 Environment Level

m A typical abstraction at the environment level is that of
an artifact: a non-autonomous, non-proactive entity
which however is not an object in object orientation.

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 24

1.2 Environment Level

@KM TU Clausthal 1 History and the MAOP Paradigm PUC

University of Technology

m A typical abstraction at the environment level is that of
an artifact: a non-autonomous, non-proactive entity
which however is not an object in object orientation.

m An artifact transparently encapsulates two other
important abstractions connecting agents and their
environment: actions and percepts.

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 24

1.2 Environment Level

@KM TU Clausthal 1 History and the MAOP Paradigm PUC

m A typical abstraction at the environment level is that of
an artifact: a non-autonomous, non-proactive entity
which however is not an object in object orientation.

m An artifact transparently encapsulates two other
important abstractions connecting agents and their
environment: actions and percepts.

m Artifacts can be used to transparently give agents
access to software services. They can also be used to
create a model of a real-world environment.

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 24

@Kﬂ TU Clausthal 1 History and the MAOP Paradigm PUC

Clausthal University of Technology 1.3 Social Level

1.3 Social Level

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 25

@Ku TU Clausthal 1 History and the MAOP Paradigm PUC

1.3 Social Level

Organisations, obligations, norms

m An agent organisation typically has a structure, possibly
hierarchical, formed by groups of agents, where
individual agents might play specific roles.

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 26

@U‘H TU Clausthal 1 History and the MAOP Paradigm PUC

1.3 Social Level

Organisations, obligations, norms

m An agent organisation typically has a structure, possibly
hierarchical, formed by groups of agents, where
individual agents might play specific roles.

m If an agent autonomously choses to adopt a specific
role in an agent organisation, it will commit to specific
obligations that the organisation expect of agents
playing that role.

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 26

kel TU Clausthal e e P PUC

Organisations, obligations, norms

m An agent organisation typically has a structure, possibly
hierarchical, formed by groups of agents, where
individual agents might play specific roles.

m If an agent autonomously choses to adopt a specific
role in an agent organisation, it will commit to specific
obligations that the organisation expect of agents
playing that role.

m Such obligations, prohibitions, and permissions are
specified by means of social norms.

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 26

! TU Clausthal gy e o e PUC
Organisations, obligations, norms Il

m Norms can be enforced by regimentation, i.e. the
system prevents the violation of the norm to even take
place, or sanctions might be specified so as to punish
agents that do not comply with particular norms.

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 27

! TU Clausthal gy e o e PUC
Organisations, obligations, norms Il

m Norms can be enforced by regimentation, i.e. the
system prevents the violation of the norm to even take
place, or sanctions might be specified so as to punish
agents that do not comply with particular norms.

m Social plans can be used to explicitly represent the
specific subgoals that each agent in a group is expected
to achieve in order for a task that requires the joint work
of a team of agents to be accomplished.

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 27

MW TU Clallsthal 2 Examples of Programming Languages PUC

2. Examples of Programming Languages

Examples of Programming Languages
B JASON
m Other BDI-Based Languages
m Approaches based on executable logics

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 28

@KM TU Clausthal 2 Examples of Programming Languages PUC

Overview

m We focus here on individual agent programs.

m We present mainly JASON and mention in
passing a few other languages.

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 29

@Hf* TU Clausthal ZZF;(aJTSFng of Programming Languages PUC

Clausthal University of Technology

2.1 JASON

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 30

&Ml% TU Clausthal ZZF;(ZiJTsF:)lES of Programming Languages PUC

Clausthal University of Technolo

AgentSpeak

m Originally proposed by Rao [Rao, 1996]

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 31

&MM TU Clausthal ZZFT?aJTJ?)lES of Programming Languages PUC

Clausthal University of Technolo

AgentSpeak

m Originally proposed by Rao [Rao, 1996]
m Programming language for BDI agents

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 31

QKW TU Clausthal ZZF;(EIJTJ?JES of Programming Languages PUC

AgentSpeak

m Originally proposed by Rao [Rao, 1996]
m Programming language for BDI agents
m Elegant notation, based on logic programming

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 31

H:Ku 1U Clausthal szf;(zxjr:ﬁ)lis of Programming Languages PUC

AgentSpeak

m Originally proposed by Rao [Rao, 1996]
m Programming language for BDI agents
m Elegant notation, based on logic programming

m Inspired by PRS (Georgeff & Lansky), dMARS (Kinny),
and BDI Logics (Rao & Georgeff)

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 31

@KM lU Clausthal ZZFﬁTsFZ)liS of Programming Languages PUC

AgentSpeak

m Originally proposed by Rao [Rao, 1996]
m Programming language for BDI agents
m Elegant notation, based on logic programming

m Inspired by PRS (Georgeff & Lansky), dMARS (Kinny),
and BDI Logics (Rao & Georgeff)

m Abstract programming language aimed at theoretical
results

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 31

@Hﬁ TU Clausthal ZZF;(iTSF:)lES of Programming Languages PUC

Clausthal University of Technology

JASON

m JASON implements the operational semantics of a
variant of AgentSpeak

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 32

@KM TU Clallsthal 2 Examples of Programming Languages PUC

2.1 JASON
University of Technology

JASON

m JASON implements the operational semantics of a
variant of AgentSpeak

m Has various extensions aimed at a more practical

programming language (e.g. definition of the MAS,
communication, ...)

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 32

@KW TU Clallsthal 2 Examples of Programming Languages PUC

2.1 JASON
University of Technology

JASON

m JASON implements the operational semantics of a
variant of AgentSpeak
m Has various extensions aimed at a more practical

programming language (e.g. definition of the MAS,
communication, ...)

m Highly customised to simplify extension and
experimentation

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 32

@Ku TU Clausthal 2 Examples of Programming Languages PUC

2.1 JASON

University of Technology

JASON

m JASON implements the operational semantics of a
variant of AgentSpeak

m Has various extensions aimed at a more practical

programming language (e.g. definition of the MAS,
communication, ...)

m Highly customised to simplify extension and
experimentation

m Developed by Jomi F. Hibner and Rafael H. Bordini

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 32

@H‘l} lq“clagsthal ZZFT;(aJTJ?)IES of Programming Languages PUC
Main Language Constructs and
Runtime Structures

Beliefs: represent the information available to an agent
(e.g. about the environment or other agents)

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 33

@Kﬂ qu“’Cla‘L‘lS‘t‘h'al ZZFT;(aJTJ?)IES of Programming Languages PUC
Main Language Constructs and

Runtime Structures

Beliefs: represent the information available to an agent
(e.g. about the environment or other agents)
Goals: represent states of affairs the agent wants to
bring about

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 33

@Kﬂ qu“’Cla‘L‘lS‘t‘h'al ZZFT;(aJTJ?)IES of Programming Languages PUC
Main Language Constructs and

Runtime Structures

Beliefs: represent the information available to an agent
(e.g. about the environment or other agents)
Goals: represent states of affairs the agent wants to
bring about
Plans: are recipes for action, representing the agent’s
know-how

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 33

@U‘l} (luw(lla‘L‘lS‘t‘h'al ZZE_;(astlz)lis of Programming Languages PUC
Main Language Constructs and

Runtime Structures

Beliefs: represent the information available to an agent
(e.g. about the environment or other agents)
Goals: represent states of affairs the agent wants to
bring about
Plans: are recipes for action, representing the agent’s
know-how

Events: happen as consequence to changes in the
agent’s beliefs or goals

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 33

@H‘l} lq“clagsthal ZZFT;(aJTJ?)IES of Programming Languages PUC
Main Language Constructs and

Runtime Structures

Beliefs: represent the information available to an agent
(e.g. about the environment or other agents)
Goals: represent states of affairs the agent wants to
bring about
Plans: are recipes for action, representing the agent’s
know-how

Events: happen as consequence to changes in the
agent’s beliefs or goals
Intentions: plans instantiated to achieve some goal

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 33

&UM TU Clausthal ZZF;(EIJTJ?JES of Programming Languages PUC

Clausthal University o

Main Architectural Components

Belief base: where beliefs are stored

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 34

@Kﬂ qu“’Cla‘L‘lS‘t‘h'al ZZFT;(aJTJ?)IES of Programming Languages PUC
Main Architectural Components

Belief base: where beliefs are stored

Set of events: to keep track of events the agent will have to
handle

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 34

@U‘l} (luw(jla‘L‘lS‘t‘h'al ZZF;(aJr:jz)lis of Programming Languages PUC
Main Architectural Components

Belief base: where beliefs are stored

Set of events: to keep track of events the agent will have to
handle

Plan library: stores all the plans currently known by the
agent

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 34

@KM lU Clausthal ZZFﬁTsFZ)liS of Programming Languages PUC

Main Architectural Components

Belief base: where beliefs are stored

Set of events: to keep track of events the agent will have to
handle

Plan library: stores all the plans currently known by the
agent

Set of Intentions: each intention keeps track of the goals
the agent is committed to and the courses of
action it chose in order to achieve the goals for
one of various foci of attention the agent might
have

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 34

QKW TU Clausthal ZZF;(EIJTJ?JES of Programming Languages PUC

Clausthal University o

JASON Interpreter

m perceive the environment and update belief base

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 35

Mﬂ TU Clausthal ZZFT;(aJTS;?)IES of Programming Languages PUC

Clausthal University of Technology

JASON Interpreter

m perceive the environment and update belief base
B process new messages

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 35

&Ku TU Clausthal ZZFT;(aJTS;?)IES of Programming Languages PUC

Clausthal University of Technology

JASON Interpreter

m perceive the environment and update belief base
W process new messages
m select event

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 35

&Ku TU Clausthal ZZFT;(aJTS;?)IES of Programming Languages PUC

Clausthal University of Technology

JASON Interpreter

m perceive the environment and update belief base
W process new messages

m select event

m select relevant plans

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 35

&Ku TU Clausthal ZZFT;(aJTS;?)IES of Programming Languages PUC

Clausthal University of Technology

JASON Interpreter

perceive the environment and update belief base
process new messages

select relevant plans

n
n
m select event
n
m select applicable plans

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 35

H:Ku 1U Clallsthal ZZE_;(astlz)lis of Programming Languages PUC

University of Technology

JASON Interpreter

m perceive the environment and update belief base
B process new messages

m select event

m select relevant plans

m select applicable plans

m create/update intention

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 35

H:U‘H TU Clallsthal ZZF;(aJr:jz)lis of Programming Languages PUC

JASON Interpreter

perceive the environment and update belief base
process new messages

select event

select relevant plans

select applicable plans

create/update intention

select intention to execute

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 35

@Kw 1

S on 2.1 JASON

U Clausthal 2 Examples of Programming Languages

JASON Rreasoning Cycle

PUC

Events | Events

Belief Agent
l Beliefs | Base
Percepts 1) Percepts 2 Events Plan
— perceive BUF | BRF Library
Externdl External
Events

Event

Messages

Suspended Intentions

2
Beliefsto Internal
SocAcc Add and Events/” ———
Delete

Applicable
Plans

Selected

Beliefs

Actions
—

Intentions

0

(Actions and Msgs)

Updated
Intention

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss

MIT Press, May 2012 36

@KW IU Clausthal 225?;}215;:!?‘5 of Programming Languages PUC

Beliefs — Representation

Syntax

Beliefs are represented by annotated literals of first order
logic

functor (termy, ..., term,) [annot;, ..., annot,,]

Example 2.1 (belief base of agent Tom)

red (box1) [source(percept)] .
friend(bob,alice) [source(bob)] .
lier(alice) [source(self),source(bob)] .
~lier (bob) [source(self)].

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 37

&?KW IU Clallstha[ZZE_TaJT\FZliS of Programming Languages PUC

Beliefs — Dynamics

By perception

beliefs annotated with source(percept) are automatically
updated accordingly to the perception of the agent

By intention

the plan operators + and - can be used to add and remove
beliefs annotated with source(self) (mental notes)

+lier(alice); // adds lier(alice) [source(self)]
-lier(john); // removes lier(john) [source(self)]

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 38

!@KW IU Clausthal ZZFTE}JT\FZ&S of Programming Languages PUC

Beliefs — Dynamics Il

By communication

when an agent receives a tell message, the content is a new
belief annotated with the sender of the message

.send(tom,tell,lier(alice)); // sent by bob
// adds lier(alice) [source(bob)] in Tom’s BB

.send (tom,untell,lier(alice)); // sent by bob

// removes lier(alice) [source(bob)] from Tom’s BB

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 39

&I?KW IU Clallsthal ZZE_TaJTsFZliS of Programming Languages PUC

Goals — Representation

Types of goals

m Achievement goal: goal fo do
m Test goal: goal to know

Goals have the same syntax as beliefs, but are prefixed by
! (achievement goal) or
? (test goal)

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 40

@Kﬂ ;[{“’Cla‘t‘ls‘thal ZZFT;(aJTJ?JIES of Programming Languages PUC
Goals — Representation Il

Example 2.2 (Initial goal of agent Tom)

lwrite (book) .

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 41

@Kw [l‘J ‘(\Ial‘l?thal ZZFTE}JT\FZliS of Programming Languages PUC
Goals — Dynamics

by intention

the plan operators ! and ? can be used to add a new goal
annotated with source(self)

// adds new achievement goal !write(book) [source(self)]
lwrite(book) ;

// adds new test goal ?7publisher (P) [source(self)]
7publisher (P);

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 42

@Kw IU ‘(\Ial‘l?tha[ZZFTE}JT\FZliS of Programming Languages PUC
Goals — Dynamics Il

By communication — achievement goal

when an agent receives an achieve message, the content is
a new achievement goal annotated with the sender of the

message

.send (tom,achieve,write(book)); // sent by Bob
// adds new goal write(book) [source(bob)] for Tom

.send (tom,unachieve,write(book)); // sent by Bob

// removes goal write(book) [source(bob)] for Tom

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 43

Mw IU ‘Clal‘ls‘thal 22??1?31? of Programming Languages PUC
Goals — Dynamics llI

By communication — test goal

when an agent receives an askOne or askAll message, the
content is a new test goal annotated with the sender of the

message

.send (tom, askOne,published (P) ,,Answer); // sent by Bob
// adds new goal 7publisher(P) [source(bob)] for Tom
// the response of Tom will unify with Answer

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 44

@KM lU Clausthal ZZFﬁTsFZ)liS of Programming Languages PUC

Triggering Events — Representation

m Events happen as consequence to changes in the
agent’s beliefs or goals

m An agent reacts to events by executing plans

m Types of plan triggering events
+b (belief addition)
-b (belief deletion)
+!g (achievement-goal addition)
-lg (achievement-goal deletion)
+?7g (test-goal addition)
-7g (test-goal deletion)

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 45

WW [l‘J (\lal‘lS‘thdl Z;Tajrlwf()lzs of Programming Languages PUC
Plans — Representation

|
An AgentSpeak plan has the following general structure:

triggering_event : context <- body.

where:

m the triggering event denotes the events that the plan is
meant to handle

m the context represent the circumstances in which the
plan can be used

m the body is the course of action to be used to handle
the event if the context is believed true at the time a
plan is being chosen to handle the event

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 46

@KM lU Clausthal ZZFﬁTsFZ)liS of Programming Languages PUC

Plans — Operators for Plan Context

Boolean operators
& (and)
| (o)
not (not)
= (unification)
>, >= (relational)
<, <= (relational)
== (equals)
\ == (different)

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss

Arithmetic operators

+ (sum)
- (subtraction)
* (multiply)
/ (divide)
div (divide —integer)
mod (remainder)
** (power)

MIT Press, May 2012 47

H:Ku 1U Clausthal szf;(zxjr:ﬁ)lis of Programming Languages PUC

Plans — Operators for Plan Body

A plan body may contain:
m Belief operators (+, -, -+)
m Goal operators (!, 7, !'!)
m Actions (internal/external) and Constraints

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 48

Wl TU Clausthal s oresenmes o PUC

Plans — Operators for Plan Body Il
Example 2.3 (plan body)

+rain : time_to_leave(T) & clock.now(H) & H >= T
<- lgi; // new sub-goal
g2, // new goal
7b(X) ; // new test goal

+b1(T-H) ; // add mental note
-b2(T-H) ; // remove mental note
-+b3(T*H); // update mental note
jia.get(X); // internal action

X > 10; // constraint to carry on
close(door) .// external action

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 49

el TU Clausthal

2 Examples of Programming Languages

gt PUC

Plans — Example

+green_patch(Rock) [source(percept)]
not battery_charge(low)
<- 7location(Rock,Coordinates) ;
lat (Coordinates) ;
lexamine (Rock) .
+!at (Coords)
not at(Coords) & safe_path(Coords)
<- move_towards (Coords) ;

lat (Coords) .
+!at (Coords)

not at(Coords) & not safe_path(Coords)

<-
R. Bordlm JElSCCQan)Lg Sl\%ulu chnt ytstc(ms Ed. gds) °

Weiss MIT Press, May 2012 50

@KW IL‘JHC laquhal 22E.;<ajr:\1;z)lis of Programming Languages PUC
Plans — Dynamics
The plans that form the plan library of the
agent come from

m initial plans defined by the
programmer

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 51

@KW IU Clausthal 22E.;<ajr:\1£)|is of Programming Languages PUC

Plans — Dynamics

The plans that form the plan library of the
agent come from
m initial plans defined by the

programmer
m plans added dynamically and

intentionally by
m .add_plan
m .remove_plan

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 51

@KW IU Clausthal 22E.;<ajr:\1£)|is of Programming Languages PUC

Plans — Dynamics

The plans that form the plan library of the
agent come from
m initial plans defined by the

programmer
m plans added dynamically and

intentionally by
m .add_plan
m .remove_plan

m plans received from
m tell[How messages
m untellHow

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 51

@Hﬁ TU Clausthal ZZF;(ziJTSF:)IEs of Programming Languages PUC

Clausthal University of Technology

Strong Negation
Example 2.4

+!leave (home)
~raining
<- open(curtains);

+11leave (home)

not raining & not ~raining
<- .send(mum,askOne,raining,Answer,3000) ;

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 52

@Hﬁ Tqm(j(lalﬁls‘t(hal ZZF;(ZiJTsF:)lES of Programming Languages PUC
Prolog-like Rules in the Belief Base

Example 2.5

likely_color(0bj,C) :-
colour(0bj,C) [degdfCert(D1)] &
not (colour(0bj,_) [degOfCert(D2)] & D2 > D1) &
not ~colour(C,B).

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 53

&MM TU Clausthal ZZFT?aJTJ?)lES of Programming Languages PUC

Clausthal University of Technolo

Plan Annotations

m Like beliefs, plans can also have annotations, which go
in the plan label

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 54

@U‘l} (luw(jla‘L‘lS‘t‘h'al ZZF;(aJr:jz)lis of Programming Languages PUC
Plan Annotations
m Like beliefs, plans can also have annotations, which go
in the plan label
m Annotations contain meta-level information for the

plan, which selection functions can take into
consideration

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 54

@KM ‘IL‘J“Cla‘L‘lS‘thal ZZF;(aJTj;IiS of Programming Languages PUC
Plan Annotations

m Like beliefs, plans can also have annotations, which go
in the plan label

m Annotations contain meta-level information for the
plan, which selection functions can take into
consideration

m The annotations in an intended plan instance can be
changed dynamically (e.g. to change intention
priorities)

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 54

@KW IL‘JHC laquhal 22E.;<ajr:\1;z)lis of Programming Languages PUC
Plan Annotations

m Like beliefs, plans can also have annotations, which go
in the plan label

m Annotations contain meta-level information for the
plan, which selection functions can take into
consideration

m The annotations in an intended plan instance can be
changed dynamically (e.g. to change intention
priorities)

m There are some pre-defined plan annotations, e.g. to
force a breakpoint at that plan or to make the whole
plan execute atomically

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 54

@Hﬁ} T[{“’Clags‘thal ZZF;(EIJTJ?JES of Programming Languages PUC
Plan Annotations Il
Example 2.6 (an annotated plan)

@myPlan[chance_of_success(0.3), usual_payoff(0.9),
any_other_property]
+g(X) : c(t) <- aX).

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 55

@U‘l} kllngla‘L‘lS‘t‘h'al ZZFT;(aJTJ?)IES of Programming Languages PUC
Failure Handling: Contingency Plans

Example 2.7 (an agent blindly committed to g)

tlg ¢
+lg <- g
-lg : true <- lg.

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 56

QKW TU Clausthal ZZF?EIJTJ?)'ES of Programming Languages PUC

Higher-Order Variables

Example 2.8 (an agent that asks for plans on
demand)

-1G[error(no_relevant)] : teacher(T)
<- .send(T, askHow, { +!G }, Plans);
.add_plan(Plans);
1G.

in the event of a failure to achieve any goal G due to
no relevant plan, asks a teacher for plans to achieve
G and then try G again

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 57

@KW lU Clallsthal 22E.;<ajr:\1£)|is of Programming Languages PUC

Higher-Order Variables Il

m The failure event is annotated with the
error type, line, source, ...
error(no_relevant) means no plan in
the agent’s plan library to achieve G

m { +!G } is the syntax to enclose
triggers/plans as terms

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 58

QKW TU Clausthal ZZF?EIJTJ?)'ES of Programming Languages PUC

Clausthal University of Technology

Internal Actions

m Unlike actions, internal actions do not change the
environment

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 59

H:Ku 1U Clallsthal szf;(zxjr:ﬁ)lis of Programming Languages PUC

University of Technolog,

Internal Actions

m Unlike actions, internal actions do not change the
environment

m Code to be executed as part of the agent reasoning
cycle

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 59

@Kw ‘IL‘JHCla‘L‘lS‘th‘al ZZF;(ajsz)lis of Programming Languages PUC
Internal Actions

m Unlike actions, internal actions do not change the
environment

m Code to be executed as part of the agent reasoning
cycle

m AgentSpeak is meant as a high-level language for the
agent’s practical reasoning and internal actions can be
used for invoking legacy code elegantly

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 59

@Kw ‘IL‘JHCla‘L‘lS‘th‘al ZZF;(ajsz)lis of Programming Languages PUC
Internal Actions

m Unlike actions, internal actions do not change the
environment

m Code to be executed as part of the agent reasoning
cycle

m AgentSpeak is meant as a high-level language for the
agent’s practical reasoning and internal actions can be
used for invoking legacy code elegantly

m Internal actions can be defined by the user in Java

libname.action_name(...)

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 59

lflﬂf% TU Clausthal 2 Examples of Programming Languages PUC

2.1 JASON

Standard Internal Actions

m Standard (pre-defined) internal actions have an empty
library name
B .print(termy, terma,...)
.union(listy, listy, lists)
.my_name (var)
.send(ag,perf,literal)
.intend (l#teral)
.drop_intention (literal)

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 60

@U‘H TU Clallsthal 2 Examples of Programming Languages PUC

2.1 JASON

Standard Internal Actions

m Standard (pre-defined) internal actions have an empty
library name
B .print(termy, terma,...)
.union(listy, listy, lists)
.my_name (var)
.send(ag,perf,literal)
.intend (l#teral)
.drop_intention (literal)

m Many others available for: printing, sorting, list/string
operations, manipulating the beliefs/annotations/plan
library, creating agents, waiting/generating events, etc.

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 60

@Ku TU Clausthal 2 Examples of Programming Languages PUC

2.1 JASON

Suspending and Resuming Intentions

Example 2.9 (JASON code with meta-events)

+see(gold)

<- lgoto(gold).
+!goto(gold) :see(gold)

<- l!select_direction(A);

go(A);
Igoto(gold) .
+battery(low)
<- Icharge.

“lcharge[state(started)]

<- .suspend(goto(gold)).
“Ichargelstate(finished)]

<- .resume(goto(gold)).

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss

// long term goal

// reactivity

// goal meta-events

MIT Press, May 2012 61

@U‘l} (IU‘W(:la‘L‘lS‘t‘h'al ZZF;(aJr:jz)lis of Programming Languages PUC
Communication Infrastructure

Various communication and execution management
infrastructures can be used with JASON:

Centralised: all agents in the same machine,
one thread by agent, very fast

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 62

@Kw ‘IL‘JHCla‘L‘lS‘th‘al ZZF;(ajsz)lis of Programming Languages PUC
Communication Infrastructure

Various communication and execution management
infrastructures can be used with JASON:

Centralised: all agents in the same machine,
one thread by agent, very fast

Centralised (pool): all agents in the same machine,
fixed number of thread,
allows thousands of agents

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 62

@Kw ‘lu“Cla‘L‘lS‘th‘al ZZF;(;astpz)lis of Programming Languages PUC
Communication Infrastructure
Various communication and execution management

infrastructures can be used with JASON:

Centralised: all agents in the same machine,
one thread by agent, very fast

Centralised (pool): all agents in the same machine,
fixed number of thread,
allows thousands of agents

Jade: distributed agents, FIPA-ACL

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 62

@Kw ‘lu“Cla‘L‘lS‘th‘al ZZF;(;astpz)lis of Programming Languages PUC
Communication Infrastructure
Various communication and execution management

infrastructures can be used with JASON:

Centralised: all agents in the same machine,
one thread by agent, very fast

Centralised (pool): all agents in the same machine,
fixed number of thread,
allows thousands of agents

Jade: distributed agents, FIPA-ACL
Saci: distributed agents, KQML

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 62

@KW IL‘JHClaL‘lS‘thal 22E.;<ajr:\1;z)lis of Programming Languages PUC
Communication Infrastructure
Various communication and execution management

infrastructures can be used with JASON:

Centralised: all agents in the same machine,
one thread by agent, very fast

Centralised (pool): all agents in the same machine,
fixed number of thread,
allows thousands of agents

Jade: distributed agents, FIPA-ACL
Saci: distributed agents, KQML
... others defined by the user (e.g. AgentScape)

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 62

@H‘l} AllJmCla‘L‘lS‘thal ZZFT;(aJTJ?)IES of Programming Languages PUC
Definition of a Simulated Environment

m There will normally be an environment where the
agents are situated

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 63

mﬂ TU Clallsthal ZZF;(aJr:jz)lis of Programming Languages PUC

Definition of a Simulated Environment

m There will normally be an environment where the
agents are situated

m The agent architecture needs to be customised to get
perceptions and act on such environment

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 63

@KM lU Clausthal ZZFﬁTsFZ)liS of Programming Languages PUC

Definition of a Simulated Environment

m There will normally be an environment where the
agents are situated

m The agent architecture needs to be customised to get
perceptions and act on such environment

m We often want a simulated environment (e.g. to test an
MAS application)

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 63

@KW lU Clallsthal ZZFﬁTsFZ)liS of Programming Languages PUC

Definition of a Simulated Environment

m There will normally be an environment where the
agents are situated

m The agent architecture needs to be customised to get
perceptions and act on such environment

m We often want a simulated environment (e.g. to test an
MAS application)

m This is done in Java by extending JASON’s Environment
class

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 63

&MM TU Clausthal ZZFT?aJTJ?)lES of Programming Languages PUC

austhal University of Technology

Example of an Environment Class

1 import jason.x*;
2 import ...;
3 public class robotEnv extends Environment {

4

5 public robotEnv() {

6 Literal gp =

7 Literal.parseLiteral("green_patch(souffle)");

8 addPercept (gp) ;

9 }

10

11 public boolean executeAction(String ag, Structure action) {
12 if (action.equals(...)) {

13 addPercept (ag,

14 Literal.parseLiteral("location(souffle,c(3,4))");
15 }

16

17 return true;

181} 3

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 64

@H‘l} AllJmCla‘L‘lS‘thal ZZFT;(aJTJ?)IES of Programming Languages PUC
MAS Configuration Language
Simple way of defining a multi-agent system

Example 2.10 (MAS that uses JADE as
infrastructure)

MAS my_system {
infrastructure: Jade
environment: robotEnv
agents:
c3po;
r2d2 at jason.sourceforge.net;
bob #10; // 10 instances of bob
classpath: "../lib/graph.jar";
by

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 65

&MM TU Clausthal ZZFT?aJTJ?)lES of Programming Languages PUC

Clausthal University of Technolo

MAS Configuration Language Il

Configuration of event handling, frequency of perception,
user-defined settings, customisations, etc.

Example 2.11 (MAS with customised agent)

MAS custom {
agents: bob [verbose=2,paramters="sys.properties"]

agentClass MyAg

agentArchClass MyAgArch

beliefBaseClass jason.bb.JDBCPersistentBB(
"org.hsqldb. jdbcDriver",
"jdbc:hsqldb:bookstore",

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 66

QKW TU Clausthal ZZFT;(aJTS;?)IES of Programming Languages PUC

Clausthal University o

MAS Configuration Language Il
Example 2.12 (CARTAGO environment)

MAS grid_world {

environment: alice.c4jason.CEnv

agents:
cleanerAg
agentArchClass alice.c4jason.CogAgentArch
#3;
b

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 67

Mﬂ TU Clausthal ZZFT;(aJTS;?)IES of Programming Languages PUC

Clausthal University of Technology

JASON Customisations

m Agent class customisation:
selectMessage, selectEvent, selectOption,
selectintetion, buf, brf, ...

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 68

H:U‘H TU Clallsthal ZZF;(aJr:jz)lis of Programming Languages PUC

JASON Customisations

m Agent class customisation:
selectMessage, selectEvent, selectOption,
selectintetion, buf, brf, ...

m Agent architecture customisation:
perceive, act, sendMsg, checkMail, ...

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 68

@KM TU Clausthal 2 Examples of Programming Languages PUC

2.1 JASON

JASON Customisations

m Agent class customisation:
selectMessage, selectEvent, selectOption,
selectintetion, buf, brf, ...

m Agent architecture customisation:
perceive, act, sendMsg, checkMail, ...

m Belief base customisation:
add, remove, contains, ...

m Example available with JASON: persistent belief base (in
text files, in data bases, ...)

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 68

2.1 JASON

Further Resources

@U‘H TU Clallsthal 2 Examples of Programming Languages PUC

WWILEY

programming

multi-agent systems
lentSpea

using 7¢c

B http://jason.sourceforge.net in Aq

m R.H. Bordini, J.F. Hibner, and
M. Wooldrige
Programming Multi-Agent
Systems in AgentSpeak using
Jason
John Wiley & Sons, 2007.

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 69

http://jason.sourceforge.net

@KW 2 Examples of Programming Languages Pl I‘
" TU ClauSthal 2.2 Other BDI-Based Languages

Clausthal University of Technology

2.2 Other BDI-Based
Languages

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 70

2 Examples of Programming Languages Pl I‘ RS

= TU ClauSthal 2.2 Other BDI-Based Languages

Clausthal University of Technology

JADEX

Agent

Incoming

Goal
Deliberation Messages

Outgoing
Messages

Means-End

Reasoning

Figure 1 : The Abstract Architecture of JADEX.
[< J

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 71

@KW 2 Examples of Programming Languages Pl I‘
" TU Clal‘“}ﬁthal 2.2 Other BDI-Based Languages

Clausthal University o

JADEX cont.

B |ADEX is a Java-based, modular, and standards
compliant, agent platform that allows the development
of goal-oriented agents following the BDI model.

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 72

http://jadex-agents.informatik.uni-hamburg.de/

Wl TU Clausthal 2 samples o Programming Languages PUC
JADEX cont.

B |ADEX is a Java-based, modular, and standards
compliant, agent platform that allows the development
of goal-oriented agents following the BDI model.

m It allows for programming intelligent software agents in
XML and Java and can be deployed on different kinds of
middleware such as JADE.

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 72

http://jadex-agents.informatik.uni-hamburg.de/

! TU Clausthal e PUC
JADEX cont.

B |ADEX is a Java-based, modular, and standards
compliant, agent platform that allows the development
of goal-oriented agents following the BDI model.

m It allows for programming intelligent software agents in
XML and Java and can be deployed on different kinds of
middleware such as JADE.

W http://jadex-agents.informatik.uni-hamburg.de/

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 72

http://jadex-agents.informatik.uni-hamburg.de/

! TU Clausthal e PUC
JADEX cont.

B |ADEX is a Java-based, modular, and standards
compliant, agent platform that allows the development
of goal-oriented agents following the BDI model.

m It allows for programming intelligent software agents in
XML and Java and can be deployed on different kinds of
middleware such as JADE.

W http://jadex-agents.informatik.uni-hamburg.de/
m [Pokahr et al., 2005, Braubach and Pokahr, 2011].

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 72

http://jadex-agents.informatik.uni-hamburg.de/

LA TU Clausthal

Clausthal University of Technology

2APL

2APL platform

2 Examples of Programming Languages
2.2 Other BDI-Based Languages

PUC

File Run Debug Options
@ Multi-Agam Syster : I PC rules | PRrules | State Tracer | Log | Files
m e : Overview Belief updates PG rules
$wlo E
mycar ® |:|[Beliefbase :/Goalbase
w2e “[lmanager(m) “|ar(a, 13])
Nprob(Py - is(<, rand), X < P
S| ans. 1D
:|[Planbase
: then { @blockwaorldisouth(,L 0)
}
}
}
%
: updatePosition(
i
1] i g Kl Il] |

Figure 2 : A Screenshot of the 2APL platform.

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss

MIT Press, May 2012 73

! TU Clausthal e PUC
2APL cont.

m 2APL provides programming constructs both (1) to
specify a multiagent system in terms of a set of
individual agents and a set of environments, as well as
(2) to implement cognitive agents based on the BDI
architecture.

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 74

http://apapl.sourceforge.net/

el TU Clausthal PUC
2APL cont.

m 2APL provides programming constructs both (1) to
specify a multiagent system in terms of a set of
individual agents and a set of environments, as well as
(2) to implement cognitive agents based on the BDI
architecture.

m 2APL is a modular programming language allowing the
encapsulation of cognitive components in modules. Its
graphical interface, through which a user can load,
execute, and debug 2APL multiagent programs using
different execution modes and several
debugging/observation tools.

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 74

http://apapl.sourceforge.net/

el TU Clausthal PUC
2APL cont.

m 2APL provides programming constructs both (1) to
specify a multiagent system in terms of a set of
individual agents and a set of environments, as well as
(2) to implement cognitive agents based on the BDI
architecture.

m 2APL is a modular programming language allowing the
encapsulation of cognitive components in modules. Its
graphical interface, through which a user can load,
execute, and debug 2APL multiagent programs using
different execution modes and several
debugging/observation tools.

B http://apapl.sourceforge.net/.

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 74

http://apapl.sourceforge.net/

el TU Clausthal PUC
2APL cont.

m 2APL provides programming constructs both (1) to
specify a multiagent system in terms of a set of
individual agents and a set of environments, as well as
(2) to implement cognitive agents based on the BDI
architecture.

m 2APL is a modular programming language allowing the
encapsulation of cognitive components in modules. Its
graphical interface, through which a user can load,
execute, and debug 2APL multiagent programs using
different execution modes and several
debugging/observation tools.

B http://apapl.sourceforge.net/.

m [Dastani, 2008, Alechina et al., 2011].

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 74

http://apapl.sourceforge.net/

@Kw 2 Examples of Programming Languages Pl I‘
= TU Clausthal 2.2 Other BDI-Based Languages

Clausthal University of Technology

AGENTFACTORY

AgentArchitecture and Interpreters

VINY-4V
Z1dv4v

-

Eclipse Plugin

Common Language Framework (CLF)

(FIPA Compliant)

uoddng joo|

7 Debugger

SLAN dLLH

CRITVCISE|
SINY
SLI |e207

Platform Services AgentSpotter (Profiler)

Figure 3 : The Architecture of AGENTFACTORY. o

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 75

! TU Clausthal e PUC
AGENTFACTORY cont.

m AGENTFACTORY has at its core a FIPA-standards based
Run-Time Environment (RTE) that provides support for
the deployment of heterogeneous agent types.

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 76

http://www.agentfactory.com

o TU Clausthal PUC
AGENTFACTORY cont.

m AGENTFACTORY has at its core a FIPA-standards based
Run-Time Environment (RTE) that provides support for
the deployment of heterogeneous agent types.

m More recent work has resulted in the Common
Language Framework, a suite of components for
AGENTFACTORY that are intended to help simplify the
development of diverse logic-based agent
programming languages (APLs).

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 76

http://www.agentfactory.com

o TU Clausthal PUC
AGENTFACTORY cont.

m AGENTFACTORY has at its core a FIPA-standards based
Run-Time Environment (RTE) that provides support for
the deployment of heterogeneous agent types.

m More recent work has resulted in the Common
Language Framework, a suite of components for
AGENTFACTORY that are intended to help simplify the
development of diverse logic-based agent
programming languages (APLs).

B http://www.agentfactory.com.

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 76

http://www.agentfactory.com

o TU Clausthal PUC
AGENTFACTORY cont.

m AGENTFACTORY has at its core a FIPA-standards based
Run-Time Environment (RTE) that provides support for
the deployment of heterogeneous agent types.

m More recent work has resulted in the Common
Language Framework, a suite of components for
AGENTFACTORY that are intended to help simplify the
development of diverse logic-based agent
programming languages (APLs).

B http://www.agentfactory.com.

m [Lillis et al., 2009, Jordan et al., 2010].

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 76

http://www.agentfactory.com

.

l‘l‘J‘Clau‘s“t‘haI

BRAHMS

2 Examples of Programming Languages
2.2 Other BDI-Based Languages

Java VM

Brahms VM

Java Object

[Agent
[1 Agent
Agent

Working Memory

Agent Data

[Java Object

Custom
Java

Brahms External Agent

Brahms
API

‘Workf!ames‘ | Agent Data

’-——‘ Beliefs

Activities Ehaughtfram%s

Code

‘ Communicative Act
Responses ‘Fac\lilies |
Facilities
[wosc |[ums][some |[e |
‘ Webul H Corba H INI H o ‘

Reasoning State Network

Communjicative Act
s

End Points

Tcp || coraall wus

Selection nvironmen World
Engine Model Facts
Agent Agent
Transport Directory Service
Service

PUC

Common
Services

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss

MIT Press, May 2012 77

@KW 2 Examples of Programming Languages Pl I‘
" TU ClauSthal 2.2 Other BDI-Based Languages

Clausthal University of Technology

BRAHMS cont.

m BRAHMS can be seen both as a programming language
as well as a behavioural modelling language.

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 78

http://ti.arc.nasa.gov/news/ocams-jsc-award/
http://ti.arc.nasa.gov/news/ocams-jsc-award/

! TU Clausthal e PUC
BRAHMS cont.
m BRAHMS can be seen both as a programming language
as well as a behavioural modelling language.

m It allows users to model complex agent organisations,
to simulate people, objects and environments.

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 78

http://ti.arc.nasa.gov/news/ocams-jsc-award/
http://ti.arc.nasa.gov/news/ocams-jsc-award/

R TU Clausthal PUC
BRAHMS cont.

m BRAHMS can be seen both as a programming language
as well as a behavioural modelling language.

m It allows users to model complex agent organisations,
to simulate people, objects and environments.

m A particularly exciting application is the multiagent
system OCAMS that was developed with BRAHMS and is
running continually in NASA’s ISS Mission control:
http://ti.arc.nasa.gov/news/ocams-jsc-award/.

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 78

http://ti.arc.nasa.gov/news/ocams-jsc-award/
http://ti.arc.nasa.gov/news/ocams-jsc-award/

R TU Clausthal PUC
BRAHMS cont.

m BRAHMS can be seen both as a programming language
as well as a behavioural modelling language.

m It allows users to model complex agent organisations,
to simulate people, objects and environments.

m A particularly exciting application is the multiagent
system OCAMS that was developed with BRAHMS and is
running continually in NASA’s ISS Mission control:
http://ti.arc.nasa.gov/news/ocams-jsc-award/.

B http://ti.arc.nasa.gov/news/ocams-jsc-award/.

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 78

http://ti.arc.nasa.gov/news/ocams-jsc-award/
http://ti.arc.nasa.gov/news/ocams-jsc-award/

! TU Clausthal PUC
BRAHMS cont.

m BRAHMS can be seen both as a programming language
as well as a behavioural modelling language.

m It allows users to model complex agent organisations,
to simulate people, objects and environments.

m A particularly exciting application is the multiagent
system OCAMS that was developed with BRAHMS and is
running continually in NASA’s ISS Mission control:
http://ti.arc.nasa.gov/news/ocams-jsc-award/.

B http://ti.arc.nasa.gov/news/ocams-jsc-award/.

m [Clancey et al., 2003, Stocker et al., 2011,
van Putten et al., 2008].

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 78

http://ti.arc.nasa.gov/news/ocams-jsc-award/
http://ti.arc.nasa.gov/news/ocams-jsc-award/

!ﬁﬂﬁ 2 Examples of Programming Languages Pl I‘
= TU Clausthal 2.2 Other BDI-Based Languages

Clausthal University of Technology

GOAL

init module{
knowledge(
clear(table) . clear(X) :- block(X), not{on(_, X)), not(holding(x)) .

The init module
initializes the agent,
here by defining
knowledge, an initial

goal, and action
specifications

% no initial beliefs about block configuration.

goals
on(a,b), on(b,c), on(c,table), on(d,e), on(e,f), on(ftable)}
)

ctionspec(
pickup(X) { pre{ clear(X), not(holding(_)) } post{ true })

)

}

9% moving X on top of Y is a constructive move if that move results in X being in position.
#define constructiveMove(X, Y) a-goal(tower([X, Y|T]), ...

Macro definitions to create
‘main module{
program(more readable cod

if a-goall holding(X)) then pickup(X) . % put a block you're holding down.
if bel(holding(x)) then {

if constructiveMove(XY) then putdown(X, ¥) . WSENNETINI NS
f true then putdown(X, table) . used to code the
) agent’s deliberation
} using rules for

selecting actions.

event module{
program(
define inPosition(X) goal-af tower([X|T])) . % block in position if it achieves a goal.

% rules for processing percepts (assumes ful observability).
forall bel(block(X), not(percept(block(X)))) do delete(block(X)) .
forall bel(percept(block(X)), not(block(X))) do insert(block(X)) .

Rules in the event
module are used to
process percepts and
messages that the
agent receives.

}
}

module adoptgoal{

}

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 79

@KW T 2 2 Examples of Programming Languages Pl I‘
" (l‘l\{“(jlauSthal 2.2 Other BDI-Based Languages

Iniversity of Technolog

GOAL cont.

m A GOAL agent program is a set of modules which
consist of various sections including knowledge, beliefs,
goals, a program section that contains action rules, and
action specifications.

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 80

http://mmi.tudelft.nl/trac/goal

! TU Clausthal e PUC
GOAL cont.

m A GOAL agent program is a set of modules which
consist of various sections including knowledge, beliefs,
goals, a program section that contains action rules, and
action specifications.

m Each of these sections is represented in a knowledge
representation language such as Prolog, answer set
programming, SQL (or Datalog), or the planning
domain definition language.

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 80

http://mmi.tudelft.nl/trac/goal

! TU Clausthal e PUC
GOAL cont.

m A GOAL agent program is a set of modules which
consist of various sections including knowledge, beliefs,
goals, a program section that contains action rules, and
action specifications.

m Each of these sections is represented in a knowledge
representation language such as Prolog, answer set
programming, SQL (or Datalog), or the planning
domain definition language.

B http://mmi.tudelft.nl/trac/goal.

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 80

http://mmi.tudelft.nl/trac/goal

! TU Clausthal e PUC
GOAL cont.

m A GOAL agent program is a set of modules which
consist of various sections including knowledge, beliefs,
goals, a program section that contains action rules, and
action specifications.

m Each of these sections is represented in a knowledge
representation language such as Prolog, answer set
programming, SQL (or Datalog), or the planning
domain definition language.

B http://mmi.tudelft.nl/trac/goal.

m [Hindriks and Roberti, 2009, Hindriks, 2007].

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 80

http://mmi.tudelft.nl/trac/goal

&Mﬂ TU Clausthal 2 Examples of Programming Languages PUC

2.3 Approaches based on executable logics

2.3 Approaches based on
executable logics

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 81

@KM 1U Clausthal 2 Examples of Programming Languages PUC

2.3 Approaches based on executable logics

Concurrent METATEM

m METATEM is a programming language for multiagent
systems based on a first-order temporal logic (with
discrete, linear models with finite past and infinite
future) [Fisher, 1997].

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 82

2.3 Approaches based on executable logics

Concurrent METATEM

m METATEM is a programming language for multiagent
systems based on a first-order temporal logic (with
discrete, linear models with finite past and infinite
future) [Fisher, 1997].

m Concurrent METATEM is the concurrent extension of
METATEM [Fisher, 1996].

@U‘H TU Clallsthal 2 Examples of Programming Languages PUC

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 82

Wl TU Clausthal 2Eromples of rogramming languages PUC
Concurrent METATEM

B METATEM is a programming language for multiagent
systems based on a first-order temporal logic (with
discrete, linear models with finite past and infinite
future) [Fisher, 1997].

m Concurrent METATEM is the concurrent extension of
METATEM [Fisher, 1996].

m A Concurrent METATEM system contains a number of
concurrently executing agents which are able to
communicate through message passing.

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 82

Wl TU Clausthal 2Eromples of rogramming languages PUC
Concurrent METATEM

m METATEM is a programming language for multiagent
systems based on a first-order temporal logic (with
discrete, linear models with finite past and infinite
future) [Fisher, 1997].

m Concurrent METATEM is the concurrent extension of
METATEM [Fisher, 1996].

m A Concurrent METATEM system contains a number of
concurrently executing agents which are able to
communicate through message passing.

m Each agent executes a first-order temporal logic
specification of its desired behaviour.

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 82

@KM 1U Clausthal 2 Examples of Programming Languages PUC

2.3 Approaches based on executable logics

Concurrent METATEM cont.

m An agent has two main components: (1) an interface
which defines how the agent may interact with its
environment (i.e. other agents), (2) a computational
engine, defining how the agent may act.

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 83

@U‘H TU Clallsthal 2 Examples of Programming Languages PUC

2.3 Approaches based on executable logics

Concurrent METATEM cont.

m An agent has two main components: (1) an interface
which defines how the agent may interact with its
environment (i.e. other agents), (2) a computational
engine, defining how the agent may act.

m The computational engine of an agent is based on the
METATEM paradigm of executable temporal logics.

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 83

@U‘H TU Clallsthal 2 Examples of Programming Languages PUC

2.3 Approaches based on executable logics

Concurrent METATEM cont.

m An agent has two main components: (1) an interface
which defines how the agent may interact with its
environment (i.e. other agents), (2) a computational
engine, defining how the agent may act.

m The computational engine of an agent is based on the
METATEM paradigm of executable temporal logics.

m The idea behind this approach is to directly execute a
declarative agent specification given as a set of
program rules which are temporal logic formulae of
the form: “"antecedent about past — consequent
about future”. The intuitive interpretation of such a
rule is “on the basis of the past, do so in the future”.

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 83

@KM TU Clallsthal 2 Examples of Programming Languages PUC

2.3 Approaches based on executable logics

Con-Golog, Indi-Golog

m ConGolog ([Giacomo et al., 2000]) and IndiGolog
([Giacomo et al., 2009]) are languages extending
Golog, a language based on the situation calculus
introduced by McCarthy. Golog stands for alGOl in
LOGic.

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 84

@KW TU Clallsthal 2 Examples of Programming Languages PUC

2.3 Approaches based on executable logics

Con-Golog, Indi-Golog

m ConGolog ([Giacomo et al., 2000]) and IndiGolog
([Giacomo et al., 2009]) are languages extending
Golog, a language based on the situation calculus
introduced by McCarthy. Golog stands for alGOl in
LOGic.

m Actions are described as in the classical STRIPS
approach: they have preconditions that must be
satisfied in order to apply the action. The
postcondition then describes the change of the world.

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 84

@KW TU Clallsthal 2 Examples of Programming Languages PUC

2.3 Approaches based on executable logics

Con-Golog, Indi-Golog

m ConGolog ([Giacomo et al., 2000]) and IndiGolog
([Giacomo et al., 2009]) are languages extending
Golog, a language based on the situation calculus
introduced by McCarthy. Golog stands for alGOl in
LOGic.

m Actions are described as in the classical STRIPS
approach: they have preconditions that must be
satisfied in order to apply the action. The
postcondition then describes the change of the world.

m The evolution of the world is described within the
logical language by fluents, which are terms in the
language. The effects of an action is formalised by
successor-state axioms: they describe what the
successor state of a given state looks like if an action is
applied.

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 84

2.3 Approaches based on executable logics

Con-Golog, Indi-Golog cont.

@KM 1U Clausthal 2 Examples of Programming Languages PUC

m Golog is a programming language that hides the
application of the situation calculus and is thus much
more user-friendly.

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 85

@KW TU Clallsthal 2 Examples of Programming Languages PUC

2.3 Approaches based on executable logics

Con-Golog, Indi-Golog cont.

m Golog is a programming language that hides the
application of the situation calculus and is thus much
more user-friendly.

m Procedures in Golog actions are reduced to primitive
actions which refer to actions in the real world, such
as picking up objects, opening doors, moving from one
room to another, and so on.

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 85

@KW IU Clallsthal 3 Organisation and Environment Programming PUC

3. Organisation and Environment

Programming

Organisation and Environment Programming
m MOISE
m CARTAGO

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 86

@Ku TU Clausthal 3 Organisation and Environment Programming PUC

Clausthal University of Technology

Organisations and Environments

m There are many approaches to agent organisations and
agent environments

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 87

H:U‘H lU Clausthal 3 Organisation and Environment Programming PUC

Organisations and Environments

m There are many approaches to agent organisations and
agent environments

m Not many are practical enough to use in multi-agent
systems development

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 87

@KW lU Clallsthal 3 Organisation and Environment Programming PUC

Organisations and Environments

m There are many approaches to agent organisations and
agent environments

m Not many are practical enough to use in multi-agent
systems development

m In these slides we will look particularly at MOISE for
programming organisations and CARTAGO for
programming environments

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 87

wl* TU Clausthal 33%rg/;\a/?oifsagion and Environment Programming PUC

Clausthal University of Technology

3.1 MOISE

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 88

@U‘l} (IU‘W(:la‘L‘lS‘t‘h'al 33%r?\a/lrzis‘3[tion and Environment Programming PUC
MolIse Framework

m MoIsE Organisation Modelling Language as Tag-based
language (issued from Moise [Hannoun et al., 2000],
Moise™ [Hubner et al., 2002a],

MOISEINST [Gateau et al., 2005])

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 89

MW IU Clallsthal 33%r?\a/lrzis‘ztion and Environment Programming PUC

MoISE Framework

m MoIsE Organisation Modelling Language as Tag-based
language (issued from Moise [Hannoun et al., 2000],
Moise™ [Hubner et al., 2002a],

MOISEINST [Gateau et al., 2005])

m OMI developped as an artefact-based working
environment (ORA4MAS [Hibner et al., 2009] based on
CARTAGO nodes) (refactoring of
S-MoIse™ [Hubner et al., 2006] and
SYNAI [Gateau et al., 2005])

m dedicated organisational artefacts that provide general
services for the agents to work within an organisation

m organisational agents that monitor and manage the
functioning of the organisation

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 89

@KW IU ‘Clal‘ls‘thal 33%r?\a/]r:is‘ztion and Environment Programming PUC
MolIse Framework

m MoIsE Organisation Modelling Language as Tag-based
language (issued from Moise [Hannoun et al., 2000],
Moise™ [Hubner et al., 2002a],

MOISEINST [Gateau et al., 2005])

m OMI developped as an artefact-based working
environment (ORA4MAS [Hibner et al., 2009] based on
CARTAGO nodes) (refactoring of
S-MoIse™ [Hubner et al., 2006] and
SYNAI [Gateau et al., 2005])

m dedicated organisational artefacts that provide general
services for the agents to work within an organisation

m organisational agents that monitor and manage the
functioning of the organisation

m Dedicated integration bridges for

m Agents and Environment (c4Jason, c4Jadex
[Ricci et al., 2009a])

R. Bordini, |. Dix - Gaapkei~hds il bsAacnd Svsteqis BV KA S mmicatiAnm £ D ikt AF A1 OO ETY, May 2012 89

H:U‘H lU Clausthal 33Carg';\a/lrzis‘3[tion and Environment Programming PUC

Iniversity of Technolog

Moiset Modelling Dimensions

 Environment

%) 3

Structural Functional

Specification Specification
Groups, links, roles Global goals, plans,
Compatibilities, multiplicities . o Missions, schemas,
inheritance Normative Specification preferences

Permissions, Obligations
Allows agents autonomy!

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 90

QKW TU Clausthal 33c.1rg';\a/215‘3§i0n and Environment Programming PUC

Clausthal University o

MOISE™ OML

m OML for defining organisation specification and
organisation entity

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 91

@KW ‘IL‘JHCla‘L‘lS‘th‘al 33%??/1'25\:[“0” and Environment Programming PUC
MolIset OML

m OML for defining organisation specification and
organisation entity
m Three independent dimensions [Hubner et al., 2007]
(~~ well adapted for the reorganisation concerns):
m Structural: Roles, Groups
m functional: Goals, Missions, Schemes
m Normative: Norms (obligations, permissions,
interdictions)

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 91

@KW IL‘JHClaL‘lS‘thal 33%r?\a/lrzis‘s[tion and Environment Programming PUC
MolIset OML

m OML for defining organisation specification and
organisation entity
m Three independent dimensions [Hubner et al., 2007]
(~~ well adapted for the reorganisation concerns):
m Structural: Roles, Groups
m functional: Goals, Missions, Schemes
m Normative: Norms (obligations, permissions,
interdictions)
m Abstract description of the organisation for

m the designers
m the agents

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 91

MW lu“(\lal‘ls‘thal 33Car?\a/lrzis‘ztion and Environment Programming PUC
MolIset OML

m OML for defining organisation specification and
organisation entity
m Three independent dimensions [Hubner et al., 2007]
(~~ well adapted for the reorganisation concerns):
m Structural: Roles, Groups
m functional: Goals, Missions, Schemes
m Normative: Norms (obligations, permissions,
interdictions)
m Abstract description of the organisation for
m the designers

m the agents
~ J-Molset [Hubner et al., 2007]

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 91

MW lu‘Clal‘lS‘thal 33Car?\a/lrzis‘ztion and Environment Programming PUC
MolIset OML

m OML for defining organisation specification and
organisation entity
m Three independent dimensions [Hubner et al., 2007]
(~~ well adapted for the reorganisation concerns):
m Structural: Roles, Groups
m functional: Goals, Missions, Schemes
m Normative: Norms (obligations, permissions,
interdictions)
m Abstract description of the organisation for
m the designers
m the agents
~ J-Molset [Hubner et al., 2007]
m the Organisation Management Infrastructure
~» ORA4MAS [Hubner et al., 2009]

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 91

! TU Clausthal

University of Technology

Molise OML global picture

3.1 MoIse

3 Organisation and Environment Programming

structural

norrmative functional

groups (

links 1
roles

\
schemas

: missions

purpose

. schema
role . instances

player

- group
instances

/ player

mission

agents

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss

PUC

Organisation
specification

Organisation
Entity

MIT Press, May 2012 92

H:Ku 1U Clallsthal SS%r%;\a/lrzis:Eion and Environment Programming Pl IC

MoIse OML Structural Specification

m Specifies the structure of an MAS along three levels:
m Individual with Role
m Social with Link
m Collective with Group

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 93

@KW IU Clallsthal 33Car?\a/lrzis‘ztion and Environment Programming PUC

MoIse OML Structural Specification

m Specifies the structure of an MAS along three levels:
m Individual with Role
m Social with Link
m Collective with Group
m Components:
m Role: label used to assign constraints on the behavior of
agents playing it
m Link: relation between roles that directly constrains the
agents in their interaction with the other agents playing
the corresponding roles
m Group: set of links, roles, compatibility relations used to
define a shared context for agents playing roles in it

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 93

&UM TU Clausthal 33%?\3/2)'5\3?0” and Environment Programming Pl IC
Clausthal University of Technology

MolIse OML Structural Specification |

m Defined with the tag structural-specification in the
context of an organisational-specification

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 94

&UM TU Clausthal 33%?\3/2)'5\3?0” and Environment Programming Pl IC
Clausthal University of Technology

MolIse OML Structural Specification Il

Example 3.1

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 95

@lﬂﬁ TU Clausthal SS%r%;a\Ois::ion and Environment Programming PUC

Clausthal University of Technology

MolIse OML Structural Specification il

<organisational-specification
<structural-specification>
<role-definitions> ... </role-definitions>
<group-specification id="xxx">

</group-specification>
</structural-specification>

</organisational-specification>

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 96

Q?IKM (lum(lla‘L‘lS‘t‘h'al SS%rg';\a/lrzis:Eion and Environment Programming PUC
Role Specification |

m Role definition(role tag) in role-definitions section, is
composed of:
m identifier of the role (id attribute of role tag)
m inherited roles (extends tag) - by default, all roles inherit
of the soc role -

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 97

éﬂﬁ TU Clausthal 33(;rg/;\a/?ois::ion and Environment Programming PUC

Clausthal University of Technology

Role Specification Il

Example 3.2

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 98

éﬂﬁ TU Clausthal SS%r?\ij\()is‘ggion and Environment Programming PUC

Clausthal University of Technology

Role Specification Il

<role-definitions>

<role
<role
<role
<role
<role

id="player" />

id="coach" />

id="middle"> <extends role="player"/> </role>
id="leader"> <extends role="player"/> </role>
id="r1>

<extends role="r2" />
<extends role="r3" />
</role>

</role-definitions>

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss

MIT Press, May 2012 99

@H‘W ![{“’Clal‘,‘ls‘thal 33c.1rg';\a/215‘3§i0n and Environment Programming PUC
Group Specification |

m Group definition (group-specification tag) is composed
of:

m group identifier (id attribute of group-specification tag)

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 100

@lﬂﬁ TU Clausthal SS%r%;a\Ois::ion and Environment Programming PUC

Clausthal University of Technology

Group Specification Il

Example 3.3

<group-specification id="team">

<roles>
<role id="coach" min="1" max="2"/>
</roles>
<links> ... </links>
<sub-groups> ... </sub-groups>
<formation-constraints> ... </formation-constraints>

</group-specification>

R. Bordini, |]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 101

Q?IKM (lum(jla‘L‘lS‘t‘h'al 33%?3/215:[“0” and Environment Programming PUC
Link Specification |

m Link definition (link tag) included in the group
definition is composed of:

m role identifiers (from, to)

m type (type) with one of the following values: authority,
communication, acquaintance

m scope of the link (scope): inter-group, intra-group

m validity in sub-groups: if extends-sub-group set to true,
the link is also valid in all sub-groups (default false)

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 102

@IKI% TU Clausthal 33(;rg/;\a/?ois::ion and Environment Programming PUC

Clausthal University of Technology

Link Specification Il

Example 3.4

<link from="coach"
to="player"
type="authority"
scope="inter-group"
extends-sub-groups="true" />

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 103

Q?IKM (lum(lla‘L‘lS‘t‘h'al SS%rg';\a/lrzis:Eion and Environment Programming PUC
Formation Constraint Specification |

m Formation constraints definition (formation-constraints
tag) in a group definition is composed of:
m compatiblity constraints (compatibility tag) between
roles (from, to), with a scope, extends-sub-groups and
directions (bi-dir)

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 104

@Hﬁ T[{“’Clags‘thal 33%?\3/215\3?0” and Environment Programming PUC
Formation Constraint Specification Il

Example 3.5

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 105

@Hf% TU Clausthal 3 Organisation and Environment Programming PUC

3.1 MoIse

Clausthal University of Technology

Formation Constraint Specification Il

<formation-constraints>
<compatibility from="middle"
to="leader"
scope="intra-group"
extends-sub-groups="false"
bi-dir="true"/>

</formation-constraints>

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 106

QKW TU Clausthal 33%rg';\a/lr:is‘sgion and Environment Programming PUC

Clausthal University of Technology

Structural Specification Example |

i inheritance: —

composition: :
| com e —— e |

sub-groups scope: .
aut
groue (Abs Role) compat @\ _& —_o

Graphical representation of structural specification of Joj Team

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 107

H:U‘H TU Clallsthal 33%?3/215:[“0” and Environment Programming PUC

Clausthal University of Technolo

Structural Specification Example Il

! Organizational Entity

-

Dida "7 tttC oalkeeper
9 P
A 77 back
Juan

Cafu ---------ooo- leader

Emerson -- iddle

Ze Roberto *
Ronaldinho **

Roberto Carlos

Ronaldo .
___-I%attacker
Adriano

Graphical representation of structural specification of 3-5-2 Joj Team

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 108

@U‘H (IU‘W(:la‘L‘lS‘th'al 33%r?\a/lrzis‘3[tion and Environment Programming PUC
Molse OML Functional Specification |

m Specifies the expected behaviour of an MAS in terms of
goals along two levels:
m Collective with Scheme
m Individual with Mission

@KW lU Clallsthal 33%??/1'25:[“0” and Environment Programming PUC

Molise OML Functional Specification Il

B Maintenance goal. Goals of this type are not satisfied at
a precise moment but are pursued while the scheme is
running.
The agents committed to them do not need to declare
that they are satisfied

m Scheme: global goal decomposition tree assigned to a
group

B Any scheme has a root goal that is decomposed into

subgoals

éﬂﬁ TU Clausthal SS%rg\Tois‘?:ion and Environment Programming PUC

Clausthal University of Technology

Goal States

.—»

impossible

waiting initial state

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 111

&UM TU Clausthal 33%?\3/215\3?0” and Environment Programming PUC

Clausthal University o

Goal States

waiting initial state

ready goal pre-conditions are satisfied &
scheme is well-formed

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 111

Mﬂ TU Clausthal 33%rg';\a/lr:is‘sgion and Environment Programming PUC

Clausthal University of Technology

Goal States

waiting initial state

ready goal pre-conditions are satisfied &
scheme is well-formed
satisfied agents committed to the goal have achieved it

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 111

H:Ku 1U Clallsthal SS%r%;\a/lrzis:Eion and Environment Programming Pl IC

Goal States

waiting initial state

ready goal pre-conditions are satisfied &
scheme is well-formed
satisfied agents committed to the goal have achieved it
impossible the goal is impossible to be satisfied

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 111

&UM TU Clausthal 33%?\3/2)'5\3?0” and Environment Programming Pl IC
Clausthal University of Technology

Molse OML Functional Specification |

m Defined with the tag functional-specification in the
context of an organisational-specification

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 112

&MM TU Clausthal 33%@/;3:5‘3?% and Environment Programming Pl IC
Clausthal University of Technology

Molise OML Functional Specification Il

Example 3.6

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 113

&Ml% TU Clausthal SS%r%;a\Ois::ion and Environment Programming PUC

Clausthal University of Technology

Molse OML Functional Specification IlI

<functional-specification>
<scheme id="sideAttack" >
<goal id="dogoal" > ... </goal>
<mission id="ml" min="1" max="5">
</mission>
</scheme>

</functional-specification>

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 114

@U‘H (IU‘W(:la‘L‘lS‘th'al 33%r?\a/lrzis‘3[tion and Environment Programming PUC
Scheme Specification |

m Scheme definition (scheme tag) is composed of:
m identifier of the scheme (id attribute of scheme tag)
m the root goal of the scheme with the plan aiming at
achieving it (goal tag)
m the set of missions structuring the scheme (mission tag)

@KW ‘IL‘JHCla‘L‘lS‘th‘al 33%r?\a/lrzis:[tion and Environment Programming PUC
Scheme Specification Il

m min. number of agents that must satisfy it (min) (default
is “all”)

m optionally, an argument (argument tag) that must be
assigned to a value when the scheme is created

m optionally a plan

m Plan definition attached to a goal (plan tag) is
composed of

m one and only one operator (operator attribute of plan
tag) with sequence, choice, parallel as possible values

m set of goal definitions (goal tag) concerned by the
operator

mﬂ TU Clallsthal 33%r?\a/lrzis‘3[tion and Environment Programming PUC

Clausthal University of Technolo

Scheme Specification Example

<scheme id="sideAttack">
<goal id="scoreGoal" min="1" >
<plan operator="sequence">
<goal id="gl" min="1" ds="get the ball" />
<goal id="g2" min="3" ds="to be well placed">
<plan operator="parallel">
<goal id="g7" min="1" ds="go toward the opponent’s field" />
<goal id="g8" min="1" ds="be placed in the middle field" />
<goal id="g9" min="1" ds="be placed in the opponent’s goal area" />
</plan>
</goal>
<goal id="g3" min="1" ds="kick the ball to the m2Ag" >
<argument id="M2Ag" />
</goal>
<goal id="g4" min="1" ds="go to the opponent’s back line" />
<goal id="gb" min="1" ds="kick the ball to the goal area" />
<goal id="g6" min="1" ds="shot at the opponent’s goal" />
</plan>
</goal>

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 117

Mﬂ TU Clausthal 33%rg';\a/lr:is‘sgion and Environment Programming PUC

Clausthal University of Technology

Mission Specification |

m Mission definition (mission tag) in the context of a
scheme definition, is composed of:

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 118

@lﬂﬁ TU Clausthal SS%r%;anisation and Environment Programming PUC

MOISE
Clausthal University of Technology

Mission Specification Il

Example 3.7

<scheme id="sideAttack">
. the goals
<mission id="ml" min="1" max="1">
<goal id="scoreGoal" /> <goal id="gl" />
<goal id="g3" />
</mission>

</scheme>

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 119

QKW TU Clausthal 33%rg';\a/lr:is‘sgion and Environment Programming PUC

Clausthal University o

Functional Specification Example (1)

mG
scoreGoal

mKG mCG
kickToGoal carryBallToGoal
mBG
defendOurGoal
Scheme
missions
goal . .
sequence choice parallelism

Graphical representation of social scheme for joj team

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 120

H:U‘H lU Clausthal 33Carg';\a/lrzis‘3[tion and Environment Programming PUC

Iniversity of Technolog

Functional Specification Example (2)

mi1, m2, m3
score a goal

m3

mi
get the ball shot at the opponent’s goal

ml m2
go towards the opponent field kick the ball to the goal area

m2 m2
be placed in the middle field go to the opponent back line

m3
be placed in the opponent goal area

ml
kick the ball to (agent committed to m2)

Key Organizational Entity
Scheme . = —) Lucio - ml |
o NN N e
__ Seossrale sequence choice parallelism ‘ ‘

LRivaIdo ----- m3)

Graphical representation of social scheme “side_attack” for joj team

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 121

Mﬂ TU Clausthal 33%rg';\a/lr:is‘sgion and Environment Programming PUC

University of Technology

Moise OML Normative Specification

m Explicit relation between the functional and structural
specifications

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 122

mﬂ TU Clallsthal 33%r?\a/lrzis‘3[tion and Environment Programming PUC

Iniversity of Technolog

Moise OML Normative Specification

m Explicit relation between the functional and structural
specifications

m Permissions and obligations to commit to missions in
the context of a role

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 122

@Kﬂ ‘IL‘J“Cla‘L‘lS‘tbal 33%r?\a/lrzis‘z[tion and Environment Programming PUC
Moise OML Normative Specification

m Explicit relation between the functional and structural
specifications

m Permissions and obligations to commit to missions in
the context of a role

m Makes explicit the normative dimension of a role

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 122

QKW TU Clausthal 33%rg';\a/lr:is‘sgion and Environment Programming PUC

Clausthal University o

Moise OML Normative Specification

m Defined with the tag normative-specification in the
context of an organisational-specification

Example 3.8

<normative-specification>
<norm id="ni1" ... />

<norm id="..." ... />
</normative-specification>

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 123

mﬂ TU Clallsthal 33%r?\a/lrzis‘3[tion and Environment Programming PUC

Iniversity of Technolog

Moise OML Normative Specification

m Defined with the tag normative-specification in the
context of an organisational-specification

m Specification in sequence of the different norms
participating to the governance of the organisation

Example 3.8

<normative-specification>
<norm id="ni" ... />

<norm id="..." ... />
</normative-specification>

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 123

QKW TU Clausthal 33c.1rg';\a/215‘3§i0n and Environment Programming PUC

Clausthal University of Technology

Norm Specification

m Norm definition (norm tag) in the context of a
normative-specification definition, is composed of:

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 124

QKW TU Clausthal 33%rg';\a/lr:is‘sgion and Environment Programming PUC

Clausthal University of Technology

Norm Specification

m Norm definition (norm tag) in the context of a
normative-specification definition, is composed of:
m the identifier of the norm (id)

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 124

Q?IKM lg“clagsthal 33%rg';\a/1r:is‘sgion and Environment Programming PUC
Norm Specification

m Norm definition (norm tag) in the context of a
normative-specification definition, is composed of:
m the identifier of the norm (id)
m the type of the norm (type) with obligation, permission
as possible values

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 124

3.1 MoIse

Norm Specification

m Norm definition (norm tag) in the context of a
normative-specification definition, is composed of:
m the identifier of the norm (id)

m the type of the norm (type) with obligation, permission
as possible values

m optionally a condition of activation (condition) with the
following possible expressions:

B checking of properties of the organisation (e.g.
#role_compatibility, #mission_cardinality,
#role_cardinality, #goal_non_compliance)

~» unregimentation of organisation properties!!!

m (un)fulfillment of an obligation stated in a particular

norm (unfulfilled, fulfilled)

H:U‘H TU Clallsthal 3 Organisation and Environment Programming PUC

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 124

@U‘H (IU‘W(:la‘L‘lS‘th'al 33%r?\a/lrzis‘3[tion and Environment Programming PUC
Norm Specification

m Norm definition (norm tag) in the context of a
normative-specification definition, is composed of:
m the identifier of the norm (id)
m the type of the norm (type) with obligation, permission
as possible values
m optionally a condition of activation (condition) with the
following possible expressions:

B checking of properties of the organisation (e.g.
#role_compatibility, #mission_cardinality,
#role_cardinality, #goal_non_compliance)

~» unregimentation of organisation properties!!!

m (un)fulfillment of an obligation stated in a particular
norm (unfulfilled, fulfilled)

m the identifier of the role (role) on which the role is
applied

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 124

@U‘H (IU‘W(:la‘L‘lS‘th'al 33%r?\a/lrzis‘3[tion and Environment Programming PUC
Norm Specification

m Norm definition (norm tag) in the context of a
normative-specification definition, is composed of:
m the identifier of the norm (id)
m the type of the norm (type) with obligation, permission
as possible values
m optionally a condition of activation (condition) with the
following possible expressions:

B checking of properties of the organisation (e.g.
#role_compatibility, #mission_cardinality,
#role_cardinality, #goal_non_compliance)

~» unregimentation of organisation properties!!!

m (un)fulfillment of an obligation stated in a particular
norm (unfulfilled, fulfilled)

m the identifier of the role (role) on which the role is
applied
m the identifier of the mission (mission) concerned by the

norm
R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 124

@U‘H (IU‘W(:la‘L‘lS‘th'al 33%r?\a/lrzis‘3[tion and Environment Programming PUC
Norm Specification

m Norm definition (norm tag) in the context of a
normative-specification definition, is composed of:
m the identifier of the norm (id)
m the type of the norm (type) with obligation, permission
as possible values
m optionally a condition of activation (condition) with the
following possible expressions:

B checking of properties of the organisation (e.g.
#role_compatibility, #mission_cardinality,
#role_cardinality, #goal_non_compliance)

~» unregimentation of organisation properties!!!

m (un)fulfillment of an obligation stated in a particular
norm (unfulfilled, fulfilled)

m the identifier of the role (role) on which the role is
applied
m the identifier of the mission (mission) concerned by the

norm
R. Bordini, |. Dix - Chapter 13> Multi-Agent Systems, Ed. G . Weisg ._* ¢ o _ Lt g\ MIT Press, May 2012 124

@KW IU Clallsthal 33Car?\a/lrzis‘ztion and Environment Programming PUC

Norm Specification — example

role deontic mission TTF
back obliged ml get the ball, go ... 1 minute
left obliged m2 be placed at ..., kick... 3 minute
right obliged m2 1 day
attacker obliged m3 kick to the goal, ... 30 seconds
<norm id = "nl" type="obligation"

role="back" mission="ml" time-constraint="1 minute"/>
<norm id = "n4" type="obligation"

condition="unfulfilled(obligation(_,n2,_,_))"
role="coach" mission="ms" time-constraint="3 hour"/>

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 125

@Ku TU Clausthal 33%rg';\a/1r:is‘sgion and Environment Programming

Clausthal University of Technology

Organisation Entity Dynamics

Organisation is created (by the agents)
m instances of groups
m instances of schemes

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss

PUC

MIT Press, May 2012 126

@U‘H TU Clallsthal 33%?3/215:[“0” and Environment Programming
Clausthal University of Technology

Organisation Entity Dynamics

Organisation is created (by the agents)
m instances of groups
m instances of schemes

Agents enter into groups adopting roles

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss

PUC

MIT Press, May 2012 126

@KW ‘IL‘JHCla‘L‘lS‘th‘al 33%r?\a/lrzis:[tion and Environment Programming PUC
Organisation Entity Dynamics

Organisation is created (by the agents)
m instances of groups
m instances of schemes
Agents enter into groups adopting roles
Groups become responsible for schemes
m Agents from the group are then obliged to commit to
missions in the scheme

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 126

@KW ‘IL‘JHCla‘L‘lS‘th‘al 33%??/1'25\:[“0” and Environment Programming PUC
Organisation Entity Dynamics

Organisation is created (by the agents)
m instances of groups
m instances of schemes
Agents enter into groups adopting roles
Groups become responsible for schemes
m Agents from the group are then obliged to commit to
missions in the scheme
Agents commit to missions

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 126

@KW ‘IL‘JHCla‘L‘lS‘th‘al 33%??/1'25\:[“0” and Environment Programming PUC
Organisation Entity Dynamics

Organisation is created (by the agents)
m instances of groups
m instances of schemes
Agents enter into groups adopting roles
Groups become responsible for schemes
m Agents from the group are then obliged to commit to
missions in the scheme
Agents commit to missions
Agents fulfil mission’s goals

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 126

@KW IL‘JHClaL‘lS‘thal 33%r?\a/lrzis‘s[tion and Environment Programming PUC
Organisation Entity Dynamics

Organisation is created (by the agents)
m instances of groups
m instances of schemes

Agents enter into groups adopting roles
Groups become responsible for schemes

m Agents from the group are then obliged to commit to
missions in the scheme

Agents commit to missions
Agents fulfil mission’s goals
A Agents leave schemes and groups

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 126

MW lu“(\lal‘ls‘thal 33Car?\a/lrzis‘ztion and Environment Programming PUC
Organisation Entity Dynamics

Organisation is created (by the agents)
m instances of groups
m instances of schemes

Agents enter into groups adopting roles
Groups become responsible for schemes

m Agents from the group are then obliged to commit to
missions in the scheme

Agents commit to missions

Agents fulfil mission’s goals

A Agents leave schemes and groups

Schemes and groups instances are destroyed

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 126

MW lu “Clal‘ls‘thal 33Car?\a/lrzis‘ztion and Environment Programming PUC
Organisation management
infrastructure (OMI) |

Responsibility

m Managing — coordination, regulation — the agents’
execution within organisation defined in an
organisational specification

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 127

@KW AllJmCla‘L‘lS‘thal 33%rg';\a/lr:is‘sgion and Environment Programming PUC
Organisation management
infrastructure (OMI) |l

_OKPEL

(e.g. MadKit, AMELI, S-MoOISET, ...)

Organlsat|on
Program

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 128

@U‘H TU Clausthal 33Carg';\a/lrzis‘3[tion and Environment Programming
Clausthal University of Technology

PUC

Organisational artifacts in ORA4MAS

System

‘ Group
Artifact

Scheme
Artifact

Scheme
Artifact

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss

m based on A&A and
MOISE

m agents create and
handle organisational
artifacts

m artifacts in charge of
regimentations,
detection and
evaluation of norms
compliance

m agents are in charge of
decisions about
sanctions

m distributed solution
MIT Press, May 2012 129

H:U‘H lU Clausthal 33Carg';\a/lrzis‘3[tion and Environment Programming PUC

ORA4MAS — GroupBoard artifact

[GroupBoard
Specification Operations:
: .
Players | adoptRoIe(ro.Ie). th.e
- agent executing this
Schemes operation tries to adopt a
)| role in the group

O C_adortfole >

O _eaveiols >

OF addScheme

O Cremovescrene >

=
1 z
R. BordinklDix o Chantar 12- MultiAcent Suctams E4 . Mlleiss MIT Press, May 2012 130

H:U‘H lU Clausthal 33Carg';\a/lrzis‘3[tion and Environment Programming PUC

ORA4MAS — GroupBoard artifact

[GroupBoard
Specification Operations:
: .
Players | adoptRoIe(ro.Ie). th.e
- agent executing this
Schemes operation tries to adopt a
)| role in the group

O _ m leaveRole(role)

O _eaveiols >

OF addScheme

O Cremovescrene >

=
1 z
R. BordinklDix o Chantar 12- MultiAcent Suctams E4 . Mlleiss MIT Press, May 2012 130

@Kﬂ lU Clausthal 3 Organisation and Environment Programming PUC

3.1 MoIse

ORA4MAS — GroupBoard artifact

[GroupBoard
Specification
|
Players
|
Schemes
O adoptRole
O _eaveriole >
O - addScheme
O omovescrems >
Z
‘l z
R. BordinkelgRix . Chopnitor 13- Mylti_Agont storpe Ed

Weiss

Operations:

m adoptRole(role): the
agent executing this
operation tries to adopt a
role in the group

m leaveRole(role)

m addScheme(schid): the
group starts to be
responsible for the
scheme managed by the
SchemeBoard schld

MIT Press, May 2012 130

H:U‘H lU Clausthal 3 Organisation and Environment Programming PUC

3.1 MoIse

ORA4MAS — GroupBoard artifact

[GroupBoard
Specification
|
Players
|
Schemes
O adoptRole
O _eaveriole >
O - addScheme
O omovescrems >
Z
‘l z
R. BordinkelgRix . Chopnitor 13- Mylti_Agont tome Ed ¢

Weiss

Operations:

m adoptRole(role): the
agent executing this
operation tries to adopt a
role in the group

m leaveRole(role)

m addScheme(schid): the
group starts to be
responsible for the
scheme managed by the
SchemeBoard schld

m removeScheme(schid)

MIT Press, May 2012 130

@Kﬂ lU Clausthal 33%r?\a/lrzis‘z[tion and Environment Programming PUC

ORA4MAS — GroupBoard artifact

[GroupBoard
—— Observable Properties:
Specification . .
= m specification: the
Players specification of the group
| . .
Schemes in the O§ (an object of
-| class moise.os.ss.Group)
OF adoptRole
O eaverole >
OF addScheme
O remavescene >
=
1 z
R. BordinklDix o Chantar 12- MultiAcent Suctams E4 . Mlleiss MIT Press, May 2012 131

@KW lU Clallsthal 3 Organisation and Environment Programming PUC

3.1 MoIse

ORA4MAS — GroupBoard artifact

[GroupBoard
Specification
|
Players
|
Schemes
OF adoptRole
O _eaveriole >
OF addScheme
O} Cmovescreme >
Z
‘l z
R. BordinblDix o Chantor 13- MultiAcont to 4 C

Observable Properties:

m specification: the
specification of the group
in the OS (an object of
class moise.os.ss.Group)

m players: a list of agents
playing roles in the
group. Each element of
the list is a pair (agent x
role)

MIT Press, May 2012 131

@KW lU Clallsthal 3 Organisation and Environment Programming PUC

3.1 MoIse

ORA4MAS — GroupBoard artifact

[GroupBoard
Specification
|
Players
|
Schemes
O adoptRole
O _eaveriole >
O - addScheme
O Cremovescnene >
Z
‘l z
R. BordinkelaRix . Chontar 12 MuyltiAgont teme Ed ¢

Weiss

Observable Properties:

m specification: the
specification of the group
in the OS (an object of
class moise.os.ss.Group)

m players: a list of agents
playing roles in the
group. Each element of
the list is a pair (agent x
role)

m schemes: a list of scheme
identifiers that the group
is responsible for

MIT Press, May 2012 131

H:Ku lU Clausthal SS%rg';\a/lrzis:Eion and Environment Programming Pl IC

ORA4MAS — SchemeBoard artifact

[SchemeBoard
Operations:

|Specification | . L o

= m commitMission(mission)
|fr°”ps | and leaveMission:
|Players | operations to “enter” and
|' | “leave” the scheme

Goals
| Obligations |

O Heommivissin >

O mettason >

O penanened >

O CaetGonnument >

W

R. Bordinimm B & . C. Weiss MIT Press, May 2012 132

H:U‘H lU Clallsthal 33%?3/215:[“0” and Environment Programming PUC

ORA4MAS — SchemeBoard artifact

[SchemeBoard
Operations:
|Specification | . L o
= m commitMission(mission)
|fr°“ps | and leaveMission:
|Players | operations to “enter” and
|g | “leave” the scheme
oals
|(-)bl' ; | m goalAchieved(goal):
lgations . .
’ defines that some goal is
1 achieved by the agent
O- ' performing the operation
O omvettsson >
O goananene >
O eatoaargument >
W
R. Bordinimm B & . C. Weiss MIT Press, May 2012 132

H:U‘H TU Clallsthal 3 Organisation and Environment Programming PUC

3.1

MOISE

ORA4MAS — SchemeBoard artifact

[SchemeBoard]
| Specification |
| groups |
| I:Iayers |
| aoals |
(-)bligations

O | oommitsson >

O eavettission >

O goatactiowed >

O | eatGoatgument >

R. Bordinimm

1 N\

. G. Weiss

Operations:

m commitMission(mission)
and leaveMission:
operations to “enter” and
“leave” the scheme

m goalAchieved(goal):
defines that some goal is
achieved by the agent
performing the operation

m setGoalArgument(goal,
argument, value):
defines the value of some
goal’s argument

MIT Press, May 2012 132

e TU Clausthal

3 Organisation and Environment Programming Pl I‘

3.1 MoIse

ORA4MAS — SchemeBoard artifact

|

SchemeBoard

| Specification

| Groups

| Players

| Goals

| Obligations

-|
O.
O.
O.

Z
R. Bordﬂﬂ,]. Dix - Chapter 13: Multi-Agent Systcm%E_ G. Weiss

leaveMission

goalAchieved

O -t setGoalArgument

Observable Properties:

m specification: the
specification of the
scheme in the OS

MIT Press, May 2012 133

@U‘H (IU‘W(:la‘L‘lS‘th'al 33%r?\a/lrzis‘3[tion and Environment Programming PUC
ORA4MAS — SchemeBoard artifact
Observable Properties:

[SchemeBoard | m specification: the
specification of the

|Epecmcaﬁ°n | scheme in the OS
|(_5r°“pS | m groups: a list of groups
[Prayers | responsible for the
|<;oa|s | scheme
| Sbligations |

]

O.

Ot leaveMission
O+ goalAchieved

O -t setGoalArgument

S P— ; . Z)
R. Bordﬂu,]. Dix - Chapter 13: Multi-Agent Systcm%E ® G. Weiss MIT Press, May 2012 133

@KW ‘IL‘JHCla‘L‘lS‘th‘al 33%r?\a/lrzis:[tion and Environment Programming PUC
ORA4MAS — SchemeBoard artifact
Observable Properties:

[SchemeBoard | m specification: the
specification of the

|Epecmcaﬁ°n | scheme in the OS
|(_5r°“pS | m groups: a list of groups
[Prayers | responsible for the
|Goals | scheme
|5b"gaﬁons | m players: a list of agents
T committed to the
scheme. Each element of
O- ' the list is a pair (agent,
O emettisson > mission)
O gpavenene >

O -t setGoalArgument

S P— ; . Z)
R. Bordﬂu,]. Dix - Chapter 13: Multi-Agent Systcm%E ® G. Weiss MIT Press, May 2012 133

@KW ‘IL‘JHCla‘L‘lS‘th‘al 33%??/1'25\:[“0” and Environment Programming PUC
ORA4MAS — SchemeBoard artifact
Observable Properties:

[SchemeBoard | m specification: the
specification of the

|Epecmcaﬁ°n | scheme in the OS

|(_3r°“pS | m groups: a list of groups

|Players | responsible for the

|Goals | scheme

|5bligaﬁons | m players: a list of agents

T committed to the
scheme. Each element of

O the list is a pair (agent,
Ot leaveMission mission)

O goalAchieved m goals: a list with the
current state of the goals

O -t setGoalArgument

i PE— ;) Z)
R. Bordﬂu,]. Dix - Chapter 13: Multi-Agent Systcm%E ® G. Weiss MIT Press, May 2012 133

@KW lU Clallsthal 33%??/1'25:[“0” and Environment Programming PUC

ORA4MAS — SchemeBoard artifact

Observable Properties:

[SchemeBoard m specification: the
|S — | specification of the
_peeteren scheme in the OS
G .
|_r°“pS | m groups: a list of groups
|Players | responsible for the
|Goals | scheme
|5b”gaﬁons | m players: a list of agents
T committed to the
scheme. Each element of
O ' the list is a pair (agent,
O- - mission)
O- - m goals: a list with the
O- _ current state of the goals
R. Bordﬂﬂ,], Dix - Chapter 13: Multi-Agent Systcm?E_. G. Weiss u ObllgatlonS: lISt o!\fllT Press, May 2012 133

@KW ‘IL‘JHCla‘L‘lS‘th‘al 33%r?\a/lrzis:[tion and Environment Programming PUC
Organisational Artifact
Implementation |

m Organisational artifacts are programmed with a
Normative Programming Language (NPL)
[Hibner et al., 2010]

m The NPL norms have

m an activation condition
B a consequence

@H‘ﬂ ;[{“’Clal‘,‘ls‘thal 33c.1rg';\a/215‘3§i0n and Environment Programming PUC
Organisational Artifact
Implementation Il

@Hﬁ T[{“’Claqs‘thal 33%?\3/215\3?0” and Environment Programming PUC
Organisational Artifact
Implementation Il

norm nl: plays(A,writer,G) -> fail.

or

norm nl: plays(A,writer,G)
-> obligation(A,nl,plays(A,editor,G),
‘now + 3 min‘¢).

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 136

@KW ‘IL‘JHCla‘L‘lS‘th‘al 33%r?\a/lrzis:[tion and Environment Programming PUC
Agent integration

m Agents can interact with organisational artifacts as with
ordinary artifacts by perception and action

Agent integration provides some “internal” tools for the
agents to simplify their interaction with the organisation:

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 137

@KW IL‘JHClaL‘lS‘thal 33%r?\a/lrzis‘s[tion and Environment Programming PUC
Agent integration

m Agents can interact with organisational artifacts as with
ordinary artifacts by perception and action

~» Any Agent Programming Language integrated with
CARTAGO can use organisational artifacts

I"

Agent integration provides some “internal” tools for the
agents to simplify their interaction with the organisation:

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 137

MW lu“(\lal‘ls‘thal 33Car?\a/lrzis‘ztion and Environment Programming PUC
Agent integration

m Agents can interact with organisational artifacts as with
ordinary artifacts by perception and action

~» Any Agent Programming Language integrated with
CARTAGO can use organisational artifacts

Agent integration provides some “internal” tools for the
agents to simplify their interaction with the organisation:

m maintenance of a local copy of the organisational state

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 137

MW lu‘Clal‘lS‘thal 33Car?\a/lrzis‘ztion and Environment Programming PUC
Agent integration

m Agents can interact with organisational artifacts as with
ordinary artifacts by perception and action

~» Any Agent Programming Language integrated with
CARTAGO can use organisational artifacts

Agent integration provides some “internal” tools for the
agents to simplify their interaction with the organisation:
m maintenance of a local copy of the organisational state

m production of organisational events

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 137

MW lu‘Clal‘lS‘thal 33Car?\a/lrzis‘ztion and Environment Programming PUC
Agent integration

m Agents can interact with organisational artifacts as with
ordinary artifacts by perception and action

~» Any Agent Programming Language integrated with
CARTAGO can use organisational artifacts

Agent integration provides some “internal” tools for the
agents to simplify their interaction with the organisation:
m maintenance of a local copy of the organisational state
m production of organisational events

m provision of organisational actions

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 137

wﬂ TU Clausthal 33%%2;?;:?8 and Environment Programming PUC

Clausthal University of Technology

3.2 CARTAGO

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 138

@Kﬂ ![{“’Clal‘,‘ls‘thal 3302rgCaEILSTeX|(08 and Environment Programming PUC
Agents and Artifacts (A&A) Conceptual
Model:

Background Human Metaphor

BAKERY

-
\ artifact workspace
J i ¥ h

R. Bordini,]. Dix -|Chapter 13: Multi-Agent Systems, Ed. G. Weiss 7 = MIT Press, May 2012 139

@U‘l} (luw(jla‘L‘lS‘t‘h'al 3302r9(:a:|I25TaAU(08 and Environment Programming PUC
A&A Basic
Concepts [Omicini et al., 2008]

m Agents
m autonomous, goal-oriented pro-active entities
m create and co-use artifacts for supporting their activities
B besides direct communication

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 140

@KW ‘IL‘JHCla‘L‘lS‘th‘al 33C)ng(:a:|l?s‘raA“(08 and Environment Programming PUC
A&A Basic
Concepts [Omicini et al., 2008]

m Agents
m autonomous, goal-oriented pro-active entities
m create and co-use artifacts for supporting their activities
B besides direct communication
m Artifacts
m non-autonomous, function-oriented, stateful entities
m controllable and observable
m modelling the tools and resources used by agents
B designed by MAS programmers

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 140

@KW IL‘JHClaL‘lS‘thal 33C)ngCa:I|?sTaAu(oCr; and Environment Programming PUC
A&A Basic
Concepts [Omicini et al., 2008]

m Agents
m autonomous, goal-oriented pro-active entities
m create and co-use artifacts for supporting their activities
B besides direct communication

m Artifacts
m non-autonomous, function-oriented, stateful entities
m controllable and observable
m modelling the tools and resources used by agents
B designed by MAS programmers

m Workspaces
B grouping agents & artifacts
m defining the topology of the computational
environment

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 140

@Kﬂ qu“’Cla‘L‘lS‘t‘h'al 33C)ng;CaEILsTeX|(08 and Environment Programming PUC
A&A Programming Model
Features [Ricci et al., 2007a]

m Abstraction
m artifacts as first-class resources and tools for agents

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 141

@U‘l} (IU‘W(:la‘L‘lS‘t‘h'al 3302rgca£|leTaAU(08 and Environment Programming PUC
A&A Programming Model
Features [Ricci et al., 2007a]

m Abstraction
m artifacts as first-class resources and tools for agents
m Modularisation
m artifacts as modules encapsulating functionalities,
organized in workspaces

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 141

@Kﬂ ‘IL‘J“Cla‘L‘lS‘tbal 33C)ngCa:I|?sTaAu(08 and Environment Programming PUC
A&A Programming Model
Features [Ricci et al., 2007a]

m Abstraction
m artifacts as first-class resources and tools for agents
m Modularisation
m artifacts as modules encapsulating functionalities,
organized in workspaces
m Extensibility and openness
m artifacts can be created and destroyed at runtime by
agents

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 141

@KW ‘IL‘JHCla‘L‘lS‘th‘al 3302rgca:||;STaA“(08 and Environment Programming PUC
A&A Programming Model
Features [Ricci et al., 2007a]

m Abstraction
m artifacts as first-class resources and tools for agents
m Modularisation
m artifacts as modules encapsulating functionalities,
organized in workspaces
m Extensibility and openness
m artifacts can be created and destroyed at runtime by
agents
m Reusability
m artifacts (types) as reusable entities, for setting up
different kinds of environments

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 141

QKW TU Clausthal 33C)ng;Ca£ILsTeX|(08 and Environment Programming Pl IC
f Technology

Clausthal University o

Artifact Abstract Representation

SIGNALS <<(Z
o
|ObsPropName(Args) | &
~<~ OBSERVABLE
| | PROPERTIES
USAGE
T r--re
INTERFACE (O OperationX(Params) e
O .. N .
B OPERATIONS
<> OperationY(Params) & g
LINK] _-le <&
INTERFACE

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 142

N 3 Organisation and Environment Programmin
TU Clausthal g gramming PLIC
3.2 CARTAGO

Clausthal University of Technology

A World of Artifacts

Lt _ n_records 1001
state table_names [. |
state) —— 5
O switch O GetLastTradePrice O createTable
O .. O addRecord
: aflag O query
a counter a Stock Quote Web Service O-
a data-base
nitems [0] next_todo [check plant |
max_items last todo [..] O clearEvents O out
O postEvent Oin
O put setTodo O registerForEvs Ord
O get cancelTodo
a bounded buffer an agenda an event service atuple space

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 143

Mﬂ TU Clausthal 33C)ngCaEILSTeX|(08 and Environment Programming PUC

sthal University of Technology

A Simple Taxonomy

m Individual or personal artifacts
m designed to provide functionalities for a single agent use

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 144

H:Ku 1U Clallsthal 3302r9Ca:|lstaAtl(08 and Environment Programming Pl IC

A Simple Taxonomy

m Individual or personal artifacts
m designed to provide functionalities for a single agent use

B e.g. an agenda for managing deadlines, a library...

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 144

@KW ‘IL‘JHCla‘L‘lS‘th‘al 33C)ng(:a:|l?s‘raA“(08 and Environment Programming PUC
A Simple Taxonomy

m Individual or personal artifacts
m designed to provide functionalities for a single agent use

B e.g. an agenda for managing deadlines, a library...
m Social artifacts
m designed to provide functionalities for structuring and
managing the interaction in a MAS
m coordination artifacts [Omicini et al., 2004],
organisation artifacts, ...

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 144

@KW ‘IL‘JHCla‘L‘lS‘th‘al 3302rgca:||;STaA“(08 and Environment Programming PUC
A Simple Taxonomy

m Individual or personal artifacts
m designed to provide functionalities for a single agent use

B e.g. an agenda for managing deadlines, a library...
m Social artifacts
m designed to provide functionalities for structuring and
managing the interaction in a MAS
m coordination artifacts [Omicini et al., 2004],
organisation artifacts, ...
B e.g. a blackboard, a game-board,...

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 144

MW lu“(\lal‘ls‘thal 33C.)ngca:\1li{s‘aALi((’)8 and Environment Programming PUC
A Simple Taxonomy

m Individual or personal artifacts
m designed to provide functionalities for a single agent use

B e.g. an agenda for managing deadlines, a library...
m Social artifacts
m designed to provide functionalities for structuring and
managing the interaction in a MAS
m coordination artifacts [Omicini et al., 2004],
organisation artifacts, ...
B e.g. a blackboard, a game-board,...
m Boundary artifacts
m to represent external resources/services
B e.g. a printer, a Web Service
m to represent devices enabling I/O with users
B e.g GUI, console, etc.

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 144

@U‘l} (IU‘W(:la‘L‘lS‘t‘h'al 3302rgca£|leTaAU(08 and Environment Programming PUC
Actions and Percepts in Artifact-Based
Environments |

m Explicit semantics defined by the (endogenous)
environment [Ricci et al., 2010]

m success/failure semantics, execution semantics
m defining the contract provided by the environment

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 145

@KW IU ‘Clal‘ls‘thal 33C_)2rgca:\1|izsxaAu<(,)8 and Environment Programming PUC
Actions and Percepts in Artifact-Based
Environments Il

actions <— artifacts’ operation

the action repertoire is given by the dynamic set of
operations provided by the overall set of artifacts available in
the workspace can be changed by creating/disposing
artifacts

m action success/failure semantics is defined by operation
semantics

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 146

MW lu “Clal‘ls‘thal 33C.)ngca:\1li{s‘aALi((’)8 and Environment Programming PUC
Actions and Percepts in Artifact-Based
Environments Il

percepts <— artifacts’ observable properties +

signals

properties represent percepts about the state of the
environment signals represent percepts concerning events
signalled by the environment

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 147

H:Ku 1U Clallsthal 3302r9Ca:|lstaAU(08 and Environment Programming Pl IC

University of Technolog,

Interaction Model: Use

2 PropName

PropName
op(parms) []
action

» () op(Params)
AGENT

m Performing an action corresponds to triggering the
execution of an operation

m acting on artifact?s usage interface

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 148

&Ku TU Clausthal 33C)ngCaEILSTeX|(08 and Environment Programming PUC

Clausthal University of Technology

Interaction Model: Operation
execution

SIGNALS
OBS PROPERTIES
((Z“PropName _alue g CHANGE
O op(Paral S
AGENT OPERATION EXECUTION
action completion
- with success or failure -

m a process structured in one or multiple transactional
steps

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 149

H:U‘H lU Clausthal 33();95:;&2;08 and Environment Programming Pl IC

Iniversity of Technolog

Interaction Model: Operation

tion
SIGNALS
BS PROPERTIE
([, Frootame[vame 5] | GEANEE™T
O op(Paral F‘
AGENT OPERATION EXECUTION
\J
action completion
- with success or failure -

m a process structured in one or multiple transactional
steps
m asynchronous with respect to agent
m ...which can proceed possibly reacting to percepts and
executing actions of other plans/activities

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 149

@KW ‘IL‘JHCla‘L‘lS‘th‘al 3302rgca:||;STaA“(08 and Environment Programming PUC
Interaction Model: Operation

tion
SIGNALS
BS PROPERTIE
([, Frootame[vame 5] | GEANEE™T
O op(Paral F\
AGENT OPERATION EXECUTION
\J
action completion
- with success or failure -

m a process structured in one or multiple transactional
steps
m asynchronous with respect to agent
m ...which can proceed possibly reacting to percepts and
executing actions of other plans/activities
m operation completion causes action completion
R sordint 1. Dix - @ Action.completionevents with success or failurey press viay 2012 149

H:Ku 1U Clallsthal 3302r9Ca:|lstaAtl(08 and Environment Programming Pl IC

University of Technology

Interaction Model: Observation

PropName(Value).
PropName(Value).

- Z,ﬁf{)i{l\]ame ‘\\
‘\/\ PropName ‘

Belief base
(or alike)

OO

AGENT
OBSERVER

m Agents can dynamically select which artifacts to
observe
m predefined focus/stopFocus actions

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss

MIT Press, May 2012 150

H:U‘H lU Clausthal 33();95:;&2;08 and Environment Programming Pl IC

Iniversity of Technolog

Interaction Model: Observation

PropName(Value).
PropName(Value).

Belief base
(or alike)

AGENT
OBSERVER

m By focussing an artifact
m observable properties are mapped into agent dynamic
knowledge about the state of the world, as percepts
B e.g. belief base

m signals are mapped as percepts related to observable
events

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 151

H:Ku 1U Clallsthal 3302r9Ca:|lstaAU(08 and Environment Programming Pl IC

University of Technolog,

Artifact Linkability

linkedOp

m Basic mechanism to enable inter-artifact interaction
m /inking artifacts through interfaces (link interfaces)
B operations triggered by an artifact over an other artifact

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 152

@KW lU Clallsthal 33C)ngca:I|?sTaAu(08 and Environment Programming Pl IC

Artifact Linkability

linkedOp

OO 00

i i
WSP-X i i WSP-Y

m Basic mechanism to enable inter-artifact interaction
m /inking artifacts through interfaces (link interfaces)
B operations triggered by an artifact over an other artifact
m Useful to design & program distributed environments
B realised by set of artifacts linked together
B possibly hosted in different workspaces

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 152

Mﬂ TU Clausthal 33C)ngCaEILSTeX|(08 and Environment Programming PUC

Clausthal University of Technology

Artifact Manual

m Agent-readable description of artifact’s...
m ...functionality
B what functions/services artifacts of that type provide

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 153

e TU Clausthal

3302r9Ca:|lstaAU(08 and Environment Programming PUC
Artifact Manual

m Agent-readable description of artifact’s...
m ...functionality

B what functions/services artifacts of that type provide
m ...operating instructions

B how to use artifacts of that type

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 153

@KW IL‘JHClaL‘lS‘thal 33C)ngCa:I|?sTaAu(oCr; and Environment Programming PUC
Artifact Manual

m Agent-readable description of artifact’s...
m ...functionality
B what functions/services artifacts of that type provide
m ...operating instructions
B how to use artifacts of that type

m Towards advanced use of artifacts by intelligent
agents [Piunti et al., 2008]
m dynamically choosing which artifacts to use to
accomplish their tasks and how to use them
m strong link with Semantic Web research issues

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 153

MW lu HQ‘ laquhal 33C.)ngca:\1li{s‘aALi((’)8 and Environment Programming PUC
Artifact Manual

m Agent-readable description of artifact’s...
m ...functionality
B what functions/services artifacts of that type provide
m ...operating instructions
B how to use artifacts of that type

m Towards advanced use of artifacts by intelligent
agents [Piunti et al., 2008]
m dynamically choosing which artifacts to use to
accomplish their tasks and how to use them
m strong link with Semantic Web research issues
m Work in progress
m defining ontologies and languages for describing the
manuals

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 153

@H‘W lu ‘Cl\austhal 33C)ngCaEILSTeX|(08 and Environment Programming PUC
CARTAGO

m Common ARtifact infrastructure for AGent Open
environment (CARTAGO) [Ricci et al., 2009b]

R. Bordini, |]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 154

http://cartago.sourceforge.net

@KW IL‘JHClaL‘lS‘thal 33C)ngCa:I|?sTaAu(oCr; and Environment Programming PUC
CARTAGO

m Common ARtifact infrastructure for AGent Open
environment (CARTAGO) [Ricci et al., 2009b]
m Computational framework / infrastructure to
implement and run artifact-based
environment [Ricci et al., 2007b]
m Java-based programming model for defining artifacts
m set of basic APl for agent platforms to work within
artifact-based environment

R. Bordini, |]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 154

http://cartago.sourceforge.net

@KW lu ‘C lal‘ls‘thal 33C.)ngca:\1li{s‘aALi((’)8 and Environment Programming PUC
CARTAGO

m Common ARtifact infrastructure for AGent Open
environment (CARTAGO) [Ricci et al., 2009b]
m Computational framework / infrastructure to
implement and run artifact-based
environment [Ricci et al., 2007b]
m Java-based programming model for defining artifacts
m set of basic APl for agent platforms to work within
artifact-based environment
m Distributed and open MAS
m workspaces distributed on Internet nodes
B agents can join and work in multiple workspace at a
time
m Role-Based Access Control (RBAC) security model

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 154

http://cartago.sourceforge.net

@KW lu ‘C lal‘ls‘thal 33C.)ngca:\1li{s‘aALi((’)8 and Environment Programming PUC
CARTAGO

m Common ARtifact infrastructure for AGent Open
environment (CARTAGO) [Ricci et al., 2009b]
m Computational framework / infrastructure to
implement and run artifact-based
environment [Ricci et al., 2007b]
m Java-based programming model for defining artifacts
m set of basic APl for agent platforms to work within
artifact-based environment
m Distributed and open MAS
m workspaces distributed on Internet nodes
B agents can join and work in multiple workspace at a
time
m Role-Based Access Control (RBAC) security model
m Open-source technology
m available at http://cartago.sourceforge.net

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 154

http://cartago.sourceforge.net

@Kﬂ ‘IL‘J“Cla‘L‘lS‘tbal 33C)ngCa:I|?sTaAu(08 and Environment Programming PUC
Integration with Agent Languages and

Platforms

m Integration with existing agent
platforms [Ricci et al., 2008]
m available bridges: JASON, Jadex, AgentFactory, simpaA, ...
B ongoing: 2APL
m including organisation platforms: MoOISE
framework [Hiibner et al., 2002b, Hiibner et al., 2006]

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 155

@KW IL‘JHClaL‘lS‘thal 33C)ngCa:I|?sTaAu(oCr; and Environment Programming PUC
Integration with Agent Languages and

Platforms

m Integration with existing agent
platforms [Ricci et al., 2008]
m available bridges: JASON, Jadex, AgentFactory, simpaA, ...
B ongoing: 2APL
m including organisation platforms: MoOISE
framework [Hiibner et al., 2002b, Hiibner et al., 2006]
m Outcome
m developing open and heterogenous MAS
m introducing a further perspective on interoperability
besides the ACL’s one
B sharing and working in a common work environment
B common object-oriented data-model

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 155

@KW lU Clallsthal 3 Organisation and Environment Programming PUC

3.2 CARTAGO

Other Features

m Other CARTAGO features not discussed in this lecture
m linkability
B executing chains of operations across multiple artifacts
m multiple workspaces
B agents can join and work in multiple workspaces,
concurrently
m including remote workspaces
m RBAC security model
B workspace artifact provides operations to set/change
the access control policies of the workspace, depending
on the agent role

m ruling agents’ access and use of artifacts of the
workspace

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 156

MW lu HQ‘ laquhal 33C.)ngca:\1li{s‘aALi((’)8 and Environment Programming PUC
Other Features

m Other CARTAGO features not discussed in this lecture
m linkability
B executing chains of operations across multiple artifacts
m multiple workspaces
B agents can join and work in multiple workspaces,
concurrently
m including remote workspaces
m RBAC security model
B workspace artifact provides operations to set/change
the access control policies of the workspace, depending
on the agent role
m ruling agents’ access and use of artifacts of the
workspace
[

m See CArtAgO papers and manuals for more information

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 156

@KW ll‘J‘ClaL‘ls‘thal 4 An Example in JACAMO PUC

4. An Example in JACAMO

An Example in JACAMO
m Organisation Program
m Agent Programs
m Environment Program

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 157

@Kﬂ TU Claus‘tp‘\aI 4 An Example in JACAMO PUC

Clausthal University of Technolo

Introduction

®m Running example used in Chapters 13 to 15

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 158

http://www.inf.pucrs.br/r.bordini/WeissBookChapter13Ex
http://www.inf.pucrs.br/r.bordini/WeissBookChapter13Ex

@Kﬂ }U“Cla‘t‘ls‘t‘h'al 4 An Example in JACAMO PUC
Introduction

®m Running example used in Chapters 13 to 15
m Scenario introduced in more details in Chapter 15

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 158

http://www.inf.pucrs.br/r.bordini/WeissBookChapter13Ex
http://www.inf.pucrs.br/r.bordini/WeissBookChapter13Ex

@KW ‘IL‘J“Cla‘L‘lS‘th‘al 4 An Example in JACAMO PUC
Introduction

®m Running example used in Chapters 13 to 15
m Scenario introduced in more details in Chapter 15

m The design was made with the focus of demonstrating
the JACAMO approach rather than the best solution for
the problem

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 158

http://www.inf.pucrs.br/r.bordini/WeissBookChapter13Ex
http://www.inf.pucrs.br/r.bordini/WeissBookChapter13Ex

@KW lu “Clal‘ls‘thal 4 An Example in JACAMO PUC
Introduction

®m Running example used in Chapters 13 to 15
m Scenario introduced in more details in Chapter 15

m The design was made with the focus of demonstrating
the JACAMO approach rather than the best solution for
the problem

m We show here code excerpts from the 3 JACAMO levels:
agent, organisation, and envirnoment

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 158

http://www.inf.pucrs.br/r.bordini/WeissBookChapter13Ex
http://www.inf.pucrs.br/r.bordini/WeissBookChapter13Ex

@KW lu ‘ClaL‘IS‘thal 4 An Example in JACAMO PUC
Introduction

®m Running example used in Chapters 13 to 15

m Scenario introduced in more details in Chapter 15

m The design was made with the focus of demonstrating
the JACAMO approach rather than the best solution for
the problem

m We show here code excerpts from the 3 JACAMO levels:
agent, organisation, and envirnoment

m The full running example can be downloaded from
http://www.inf .pucrs.br/r.bordini/
WeissBookChapter13Ex

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 158

http://www.inf.pucrs.br/r.bordini/WeissBookChapter13Ex
http://www.inf.pucrs.br/r.bordini/WeissBookChapter13Ex

@Kﬂ }U“Cla‘t‘ls‘t‘h'al 4 An Example in JACAMO PUC
Scenario

m The chosen running example centers mostly on the
organisation level and, in this design, partly on the
environment

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 159

@KW IL‘JHClaL‘lS‘thal 4 An Example in JACAMO PUC

Scenario

m The chosen running example centers mostly on the
organisation level and, in this design, partly on the
environment

m Agents are very simple and in general they only execute
the required action at the required time in orchestration
with the team, which is mostly handled by the
organisation

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 159

@U‘W ll‘J‘ClaL‘ls‘thal 4 An Example in JACAMO PUC
Scenario

m The chosen running example centers mostly on the
organisation level and, in this design, partly on the
environment

m Agents are very simple and in general they only execute
the required action at the required time in orchestration
with the team, which is mostly handled by the
organisation

m Left as exercise to extend to multiple units; there are
both JAsoN and CARTAGO solutions for contract net

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 159

@U‘W IU ‘(‘lal‘ls‘thal 4 An Example in JACAMO PUC
Scenario

m The chosen running example centers mostly on the
organisation level and, in this design, partly on the
environment

m Agents are very simple and in general they only execute
the required action at the required time in orchestration
with the team, which is mostly handled by the
organisation

m Left as exercise to extend to multiple units; there are
both JAsoN and CARTAGO solutions for contract net

m The assembly cell of a manufacturing plant is assumed
to have two jigs in a rotating table, with two
manufacturing robots located at two ends of the table:
one that mostly does loading and unloading tasks and
another that is able to join separate parts that have
been loaded into a jig

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 159

@KM IU‘Ua‘L‘ls‘t‘hal 4 An Example in JACAMO PUC
Summary of the Manufacturing
Process (quoted from Chapter 15) |

robot1 loads an A part into one of the jigs on the
rotating table

@KW IL‘JHClaL‘lS‘thal 4 An Example in JACAMO PUC
Summary of the Manufacturing
Process (quoted from Chapter 15) Il

the flipper flips the part over (“BA”) at the same time as
robot1 loads a C part into the jig
B the BA partis loaded on top of the C part

B the table rotates

robot2 joins the C and BA parts, yielding a complete
ABC part

the table is rotated, and
robot1 then unloads the finished part.

e’ TU Clausthal PUC
Summary of the Manufacturing
Process (quoted from Chapter 15) Il

m Although this process may sound straightforward, it is
made more complex by the need to manage a number
of concurrent assembly jobs. In other words, we want
to be able to exploit parallelism, for instance having
robot2 be assembling one part while robot1 is
unloading a different order. On the other hand, we
need to respect synchronization requirements such as
not moving the table while robot1 or robot2 are
operating.

@KW IL‘J‘(JlaL‘lS‘thal 4 An Example in JACAMO PUC
Summary of the Manufacturing
Process (quoted from Chapter 15) IV

m Note that in general in holonic manufacturing there are
multiple interchangeable entities so that the process of
selecting a table, or an assembly robot, needs some
mechanism to manage load-balancing (e.g. using
contract net).

@lﬂf)} TU Clausthal 4 An Example in JACAMO

Overview of a Manufacturing Cell

(from Chapter 15)

robot2 jig2

rotating
table

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss

PUC

A buffer

B buffer

C buffer

robot1

flipper

MIT Press, May 2012 164

iy 4 An Example in JACAMO PUC
-TU ClaUSthal 4.1 Organl?sation Program

Clausthal University of Technology

4.1 Organisation Program

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 165

Wl TU Clausthal e pote. PUC
Organisation |

m Very simple to specify this coordination problem in
MOISE

!@KW IU “(;‘ ! al‘ls‘t h a l 44/.\{1 (gtggﬁslitiigrﬁ)crgg’\‘/lrgln PUC
Organisation Il

m Agents playing each of the 4 roles neeed for a
functional “assembly cell group”

m This example only uses some of the MOISE expression
power

m Agent “cellmngr” used only to simulate the allocation
of assembling tasks, for testing; it uses an artefact
where manufacturing requests appear

m an instance of the manufacture_ABC scheme (see
functional specification) is created for each accepted
task: as there are two jigs a cell can concurrently
manufacture two pieces

e of Temnoion 4.1 Organisation Program

MOoISE Organisation: Structural
Specification

@Kﬂ '(1‘\[\{“‘Qlausthal 4 An Example in JACAMO PUC

inheritance

e :
2 D
o) .
L e)) :
.9 '
: role cardinality :

. min..max '
R Bordimm T o e e ST T e T Weiss MITPQr < WMay 2012

L O

assembly cell group

@KW T ~ 4 An Example in JACAMO PUC
" kll\{“%‘l‘akls“thal 4.1 Organl?sation Program

The Social Plan |

m The Functional Specification defines the whole social
plan

@U‘W T al 4 An Example in JACAMO PUC
[Ll u“c‘l‘lat‘ls‘thal 4.1 Organﬁ')sation Program

The Social Plan |l

m Much interagent communication was saved by
delegating the coordination task to the organisation

m At run-time, the organisation will assign goals to agents
at the appropriate times, taking into consideration the
partial ordering of the goals to be achieved according
to the functional specification

m Functional structure diagram also annotates each goal
to be achieved with one of four different missions
(loading, joining, flipping, and rotating)

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 170

@KW T al 4 An Example in JACAMO PUC
= ‘lu“(f‘l‘a‘t‘ls‘th‘al 4.1 Organisation Program

The Social Plan Il

m The normative refers to these mission to determine
which sets of goals the agents playing each of the four
roles will be asked to achieve (by the organisation
management infrastructure, at runtime)

Wl TU Clausthal e, PUC
MOoIsE Organisation: Functional
Specification

manufacture ABC

assemble AB assemble ABC finish
rotating rotating joining
wait for table abc joined A r/;yadmg
empty jig rotated 6 min]
{6 min] {2 min] rotating able unlgoaded
loadling. rotated Gl
2 jgaged /oadgg d loaging ™" table rotr;:aett/:’i7 I
ab move:
[4 min] table rotated joining § - ba loaded A
[2 min) \, to flipper |0ad while flip tonof
loading ab joined [3 min] —_— cn[Sor?‘;)] c
b loaded 15 min]
(4 min] fipping loading
flipped to ba c loaded
{8 min] {4 min]

parallel sequential
decomposition decomposition |

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 172

! TU Clausthal nampenlicate PUC
MoIsSE Organisation: Normative

Specification
norm role mission
ni loader loading
n2 joiner joining
n3 rotator rotating

nd flipper flipping

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 173

! TU Clausthal o bamrlen i PUC

Clausthal University of Technology

4.2 Agent Programs

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 174

W TU Clausthal 4 n Bample n ACAMO PUC
Plans to Facilitate Interaction with
MoISE and CARTAGO

m JASON plans available with JACAMO which facilitate
interaction with MoISE and CARTAGO when
programming the agents

Example 4.1

Generic Plan for Agents that are part of an Organisation

// obligation to achieve a goal
+obligation(Ag,Norm,achieved(Scheme,Goal,Ag) ,Deadline)
.my_name (Ag) <-
!Goal [scheme (Scheme)] ;
lookupArtifact (Scheme, Id) ;
goalAchieved(Goal) [artifact_id(Id)].

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 175

W TU Clausthal 4 n Bample n ACAMO PUC
Plans to Facilitate Interaction with
MoISE and CARTAGO

m JASON plans available with JACAMO which facilitate
interaction with Molise and CARTAGO when
programming the agents

m Some such plans appear in file common . asl

Example 4.1

Generic Plan for Agents that are part of an Organisation

// obligation to achieve a goal
+obligation(Ag,Norm,achieved(Scheme,Goal,Ag) ,Deadline)
.my_name (Ag) <-
!Goal [scheme (Scheme)] ;
lookupArtifact (Scheme,Id) ;
goalAchieved(Goal) [artifact_id(Id)].

R. Bordini, |. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 175

! TU Clausthal o bamrlen i PUC
Explanation of the Previous Plan

m That plan says that whenever the agent comes to
believe that it has a new obligation towards an
organisational goal Goal (note the use of JASON
higher-order variables here), it just tries to achieve that
goal

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 176

@U‘W T al 4 An Example in JACAMO PUC
[] Ll u “9 ‘lat‘ls‘thal 4.2 A;entpProlgrams

Explanation of the Previous Plan

m That plan says that whenever the agent comes to
believe that it has a new obligation towards an
organisational goal Goal (note the use of JASON
higher-order variables here), it just tries to achieve that
goal

m If all goes well, the agent tells the organisation, through
an ORA4MAS artifact, that the goal it was obliged to
achive has been achieved (this is important so that the
organisation can then delegate further goals to be
achieved, possibly by other agents)

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 176

@KW T al 4 An Example in JACAMO PUC
= ‘IL\‘JW(‘J‘I‘a‘L‘lS‘th‘al 4.2 Agentpprolgrams

Simple Controller Agents |

m In this application, the actual behaviour for agents

“loader”, “joiner”, and “flipper” is to simply adopt its
predetermined role and then do whatever it is asked to

do

@KW IL‘JHClaL‘lS‘thal 4 An Example in JACAMO PUC

4.2 Agent Programs

Simple Controller Agents Ii

m This is possible because the name of such operations in
the artifact simulating the manufacturing cell is the
same as the goal itself

m Artefact operations automatically become external
actions for the JASON agent to use in plans

m This can be done in a generic way (through the use of
the higher-order variable G below), for any
organisational goal received

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 178

e’ TU Clausthal “fa e v PUC
Simple Controller Agents IlI

m Initially the agent joins the ORA4MAS workspace so as
to take part in the organisation, then it also needs to
focus on the ORA4MAS organisational artifact so as to
automatically perceive information about the group
such as newly created schemes

m The agent then adopts a role in the group (the group
and specific role for each of the three agents using this
code are specified as initial goals in the JASON project
file)

m This is the complete code for the simpler agents:

! TU Clausthal UnEne e PUC
Simple Controller Agents IV

// Join the organisation and play a role in it
+!join_and_play(GroupName, RoleName)
<- !in_oradmas;
lookupArtifact (GroupName, GroupId);
focus(Groupld);
adoptRole (RoleName) [artifact_id(GroupId)].

// Then, just do whatever told by the organisation
+!G[scheme(S)] <- G; .print("Doing ", G, " - Scheme ", S).

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 180

@KW T al 4 An Example in JACAMO PUC
= ‘ll\jjm(f‘l‘a‘t‘ls‘thal 4.2 Agentpprolgrams

The Rotator Agent |

m In the MOISE scheme for the manufacturing process,
the rotator is assigned two different goals: to wait for
an empty jig and to get the table rotated

e’ TU Clausthal “fa e v PUC
The Rotator Agent Il

m They check the number of instances of the
manufacturing scheme in MOISE so as to check if there
are 1 or 2 concurrent orders being manufactured by
this cell (each order is handled by one scheme instance)

m The name of the scheme that requested the
achievement of a particular goal is annotated in the
new goal events

@KW B ~ 4 An Example in JACAMO PUC
= TU (JlaL‘ISt‘f‘lal 4.2 Agentpprolgrams

Clausthal University of Technolo

The Rotator Agent llI

// rule to check if we have two concurrent orders (2 Moise schemes)
two_orders :- schemes(L) & .length(L)==2.

// or only one order so far

one_order :- schemes(L) & .length(L)==1.

// 1st organisational goal of the rotator (wait for empty jig)

// avoid conflicts when 2 orders are simultaneously waiting for empty jigs
+!wait_for_empty_jig[scheme(S1)]
.desire(wait_for_empty_jib[scheme(S2)]) & S1\==S2 <-
.wait (500) ; // wait a bit
'wait_for_empty_jig[scheme(S1)]. // and try again

// already got an empty jig
+!wait_for_empty_jig[scheme(S)]

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 183

@KW B ~ 4 An Example in JACAMO PUC
= TU (JlaL‘ISt‘f‘lal 4.2 Agentpprolgrams

Clausthal University of Technolo

The Rotator Agent IV

jig_loader ("empty") <-
reserve_jig(S). // make sure another order doesn’t get it too

// will have to wait until the jig at the loader end is empty
+lwait_for_empty_jig[scheme(S)] <-
.wait({+jig_loader("empty")}); // wait until this event happens
reserve_jig(S); // make sure empty jig is allocated to this order
// if there are pending requests to rotate the table
if (.desire(table_rotated[scheme(S)]1)) {
// might need reconsidering which plan to use for rotating
.drop_desire(table_rotated[scheme(S)]);
!1table_rotated[scheme(S)];

// 2nd organisational goal of the rotator (rotate table)

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 184

@Kﬂ (IU Claqsthal 4 An Example in JACAMO PUC

4.2 Agent Programs

The Rotator Agent V

// Only 1 assembling task, rotate whenever asked
+!table_rotated : one_order <- table_rotated.

// Let it rotate if another job needs it and we’re waiting for an empty jig
+!table_rotated :
two_orders & .desire(wait_for_empty_jig) & not jig_loader("empty") <-
table_rotated.

// If there are 2 concurrent assembling tasks, wait for both
// to want to rotate before actually rotating

// This is actually the second request to rotate
@tr[atomic] // both goals need to be considered achieved simultaneously
+!table_rotated[scheme(S1)]

two_orders & .desire(table_rotated[scheme(S2)]) & S1\==82 <-

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 185

@KW T 4 An Example in JACAMO PUC
2 TU Cla‘L‘lS‘thal 4.2 AgentpPrograms

Clausthal University o

The Rotator Agent VI

table_rotated; // one rotation achieves both requests
.succeed_goal (table_rotated[scheme(S2)]).

// The first attempt just waits, 2nd request releases both
+!table_rotated[scheme(S)]
two_orders <-
.wait(1000); // wait a bit
!table_rotated[scheme(S8)]. // try again

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 186

@KW B ~ 4 An Example in JACAMO PUC
u (ll\{“‘(f‘l‘akls“t‘r‘lal 4.2 AgentpPrograms

Cell Manager |

m The cell manager agent has mostly procedural code to
create the simulation artifacts and initialise the
organisation

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 187

! TU Clausthal o bamrlen i PUC

Clausthal University of Technology

Cell Manager I
Example 4.2

// each order generates an instance of the Manufacture scheme
Qopl[atomic] // needs to be an atomic operation: changing the no. of schemes
+order (N)
formationStatus(ok) [artifact_id(GrArtId)]
& schemes(L) & .length(L)<=1 <- // no more than 1 order under way
// wait until empty jig is correctly positioned at loader robor
.concat("order", N, SchemeName) ;
makeArtifact (SchemeName, "ora4mas.nopl.SchemeBoard",
["src/manufacture-os.xml", manufacture_schm, false, true], SchArtId);
focus(SchArtId); // get all info about this Moise scheme
addScheme (SchemeName) [artifact_id (GrArtId)].

R. Bordini, |]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 188

el TU Clausthal e PUC
Cell Manager lll

m The preceeding plan accepts at most two concurrent
manufacturing orders, and creates the necessary
ORA4MAS scheme artifact to handle a new (simulated)
manufacturing order

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 189

@KW 4 An Example in JACAMO PUC
L T[\{M‘g}?}{s}'tgal 4.3 Environment Program

4.3 Environment Program

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 190

) TU Clausthal e e PUC
Environment |

m A few environment artifacts were mentioned abova

el TU Clausthal ‘g enplence PUC
Environment Il

m Of course CNP can also be managed directly by agents,
as in the example given in [Bordini et al., 2007b,
Section 6.3]

m There are some advantages of using the artifact-based
implementation in this case

m For example it reduces the amount of direct
agent-to-agent communication required and allows the
use of CNP in open multiagent systems: when agents
join a CARTAGO workspace, they will be able to
automatically perceive the available CNP instances and
join in if they so wish

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 192

@KW T al 4 An Example in JACAMO PUC
= lu “(“‘lat‘ls‘thal 4.3 Enviro%ment Program

Environment Il

m Even though it is not necessary to program the artifact
in this case, we show the code of one of the artifacts
(the task board) just to illustrate the environment side
of the system

m It also helps showing how artifacts are at a different
level of abstracts as normal objects in Java

m The observable properties and operations automatically
become percepts/action available to all agents that
enter the shared workspace

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 193

@KW ll‘J‘ClaL‘ls‘thal 4 An Example in JACAMO PUC

4.3 Environment Program

Environment IV

m In the code for the task board (available at
http://cartago.sourceforge.net), agents use the
announce operation on this artifact when they wish to
start a new CNP instance for a particular task

m This artifact will then create another artifact to manage
that particular instance of the CNP, with an observable
property showing the task description (which again is
accessible to any agents joining the workspace at
runtime)

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 194

http://cartago.sourceforge.net

Wl TU Clausthal 43 Envienment brogtam PUC
Environment V

m Itis in that newly created artifact that agents will be
able to bid, and the agent being awarded the contract
will be announced there too

@KW T ~ 4 An Example in JACAMO PUC
= l U (JlaUSthal 4.3 Enviroﬂment Program

Clausthal University of Technology

Environment Vi

new ArtifactConfig(taskDescr,duration));
defineObsProperty("task", taskDescr, artifactName);
id.set(artifactName) ;
} catch (Exception ex) {
failed("announce_failed");
}
}

QOPERATION void clear(String id) {
String artifactName = "cnp_board_"+taskId;
this.removeObsPropertyByTemplate("task", null, artifactName);
}
}

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss

MIT Press, May 2012 196

@KW T ~ 4 An Example in JACAMO PUC
= l U (JlaUSthal 4.3 Enviroﬂment Program

Clausthal University of Technology

Some Final Comments

m The slides only included excerpts, although all the
important parts of the code were covered

R. Bordini, |]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 197

http://www.inf.pucrs.br/r.bordini/WeissBookChapter13Ex
http://www.inf.pucrs.br/r.bordini/WeissBookChapter13Ex

W TU Clausthal 0 gample n jcAMo PUC
Some Final Comments

m The slides only included excerpts, although all the
important parts of the code were covered

m Best approach to understand this example is to look at
the complete (fully commented) code and run the
system

R. Bordini, |]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 197

http://www.inf.pucrs.br/r.bordini/WeissBookChapter13Ex
http://www.inf.pucrs.br/r.bordini/WeissBookChapter13Ex

el TU Clausthal ‘g enplence PUC
Some Final Comments

m The slides only included excerpts, although all the
important parts of the code were covered

m Best approach to understand this example is to look at
the complete (fully commented) code and run the
system

m The working example for one manufacturing cell can
be dowloaded from http://www.inf.pucrs.br/r.
bordini/WeissBookChapter13Ex

R. Bordini, |]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 197

http://www.inf.pucrs.br/r.bordini/WeissBookChapter13Ex
http://www.inf.pucrs.br/r.bordini/WeissBookChapter13Ex

@KW T al 4 An Example in JACAMO PUC
= lu “(“‘lat‘ls‘thal 4.3 Enviro%ment Program

Some Final Comments

m The slides only included excerpts, although all the
important parts of the code were covered

m Best approach to understand this example is to look at
the complete (fully commented) code and run the
system

m The working example for one manufacturing cell can
be dowloaded from http://www.inf.pucrs.br/r.
bordini/WeissBookChapter13Ex

m We leave as exercise to use the CNP artifacts for
extending to multiple cells

R. Bordini, |]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 197

http://www.inf.pucrs.br/r.bordini/WeissBookChapter13Ex
http://www.inf.pucrs.br/r.bordini/WeissBookChapter13Ex

@KW ‘IL‘JHC la‘L‘lS‘th‘al 5 Acknowledgements PUC

5. Acknowledgements

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 198

@U‘H (IU‘W(:la‘L‘lS‘th'al 5 Acknowledgements PUC
Acknowledgements

m Thanks to Jomi Hibner, Olivier Boissier, Koen Hindriks,
Maarten Sierhuis, and Alessandro Ricci for some of the
slides on JASON, MoISE, GOAL, BRAHMS and CARTAGO.

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 199

@KW IL‘JHClaL‘lS‘thal 6 References PUC

6. References

References

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 200

@Hf* TU Clausthal 6 References PUC

Clausthal University of Technology

@ Alechina, N., Dastani, M., Logan, B., and Meyer, J.-J. C. (2011).
Reasoning about Agent Deliberation.
Autonomous Agents and Multi-Agent Systems, 22(2):356—381.

Austin, J. L. (1962).

How to Do Things with Words.
Oxford University Press, London.

Bordini, R. H., Braubach, L., Dastani, M., Fallah-Seghrouchni, A. E., Gomez-Sanz, |.]., Leite, J., O’Hare, G. M. P.,
Pokahr, A., and Ricci, A. (2006).

A Survey of Programming Languages and Platforms for Multi-agent Systems.

Informatica (Slovenia), 30(1):33-44.

Bordini, R. H., Dastani, M., Dix, J., and Fallah-Seghrouchni, A. E. (2011).
Preface.

Autonomous Agents and Multi-Agent Systems, 23(2):155-157.

Bordini, R. H., Dastani, M., Dix,)., and Seghrouchni, A. E. F. (2007a).
Preface — Special Issue on Programming Multiagent Systems.
International Journal of Agent-Oriented Software Engineering, 1(3/4).
Bordini, R. H., Hiibner, J. F., and Wooldridge, M. (2007b).

Programming Multi-agent Systems in AgentSpeak Using JASON.
Wiley Series in Agent Technology. John Wiley & Sons.

B & B O

Braubach, L. and Pokahr, A. (2011).

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 200

@Hf* TU Clausthal 6 References PUC

Clausthal University of Technology

Addressing Challenges of Distributed Systems Using Active Components.

In Brazier, F., Nieuwenhuis, K., Pavlin, G., Warnier, M., and Badica, C., editors, Intelligent Distributed Computing V -
Proc 5th International Symposium on Intelligent Distributed Computing (IDC 2011), volume 382 of Computational
Intelligence, pages 141-151. Springer.

Braubach, L., Pokahr, A., Moldt, D., and Lamersdorf, W. (2004).

Goal Representation for BDI Agent Systems.
In Bordini, R. H., Dastani, M., Dix, |., and Fallah-Seghrouchni, A. E., editors, ProMAS, volume 3346 of Lecture Notes
in Computer Science, pages 44—65. Springer.

Clancey, W. |., Sierhuis, M., Kaskiris, C., and van Hoof, R. (2003).

Advantages of Brahms for Specifying and Implementing a Multiagent Human-Robotic Exploration System.
In Russell, I. and Haller, S. M., editors, Proc. FLAIRS Conference, pages 7—11. AAAI Press.

Programming Multi-agent Systems, Revised Selected and Invited Papers of ProMAS 2010, volume 6599 of Lecture
Notes in Computer Science.

Springer.

Dastani, M. (2008).

2APL: A Practical Agent Programming Language.
Autonomous Agents and Multi-Agent Systems, 16(3):214—248.

B
[
@ Collier, R., Dix, J., and Novak, P., editors (2011).
6
[

Dastani, M., Fallah-Seghrouchni, A. E., Leite, ., and Torroni, P., editors (2010).

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 200

@Hﬁl TU Clausthal 6 References PUC

Clausthal University of Technology

Languages, Methodologies, and Development Tools for Multi-agent Systems, Second International Workshop, LADS
2009, Torino, Italy, September 7-9, 2009, Revised Selected Papers, volume 6039 of Lecture Notes in Computer
Science. Springer.

Dastani, M. and Gémez-Sanz, J. J. (2005).

Programming Multi-agent Systems.

Knowledge Eng. Review, 20(2):151-164.

Fisher, M. (1996).

Temporal Semantics for Concurrent MetateM.

Journal of Symbolic Computation, 22(5/6):627-648.

Fisher, M. (1997).

A Normal Form for Temporal Logics and its Applications in Theorem-Proving and Execution.
Journal of Logic and Computation, 7(4):429—-456.

Fisher, M., Bordini, R. H., Hirsch, B., and Torroni, P. (2007).

Computational Logics and Agents: A Road Map of Current Technologies and Future Trends.
Computational Intelligence, 23(1):61-91.

Gateau, B., Boissier, O., Khadraoui, D., and Dubois, E. (2005).

Moiseinst: An organizational model for specifying rights and duties of autonomous agents.
In Third European Workshop on Multi-Agent Systems (EUMAS 2005), pages 484—485, Brussels Belgium.

) & & R

Georgeff, M. P. and Lansky, A. L. (1987).
Reactive Reasoning and Planning.

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 200

@Hﬁ TU Clausthal 6 References PUC

Clausthal University of Technology
In AAAI, pages 677—682.

Giacomo, G. D., Lespérance, Y., and Levesque, H. |. (2000).

ConGolog: A Concurrent Programming Language Based on the Situation Calculus.
Journal of Artificial Intelligence, 121(1-2):109-169.

Giacomo, G. D., Lespérance, Y., Levesque, H. J., and Sardinia, S. (2009).
IndiGolog: A High-Level Programming Language for Embedded Reasoning Agents.
In Bordini, R., Dastani, M., Dix, J., and Segrouchni, A. E. F., editors, Multi-agent Programming: Languages, Tools
and Applications, pages 31-72. Springer.

Hannoun, M., Boissier, O., Sichman, J. S., and Sayettat, C. (2000).
Moise: An organizational model for multi-agent systems.
In Monard, M. C. and Sichman, J. S., editors, Proceedings of the International Joint Conference, 7th Ibero-American
Conference on Al, 15th Brazilian Symposium on Al (IBERAMIA/SBIA’2000), Atibaia, SP, Brazil, November 2000, LNAI
1952, pages 152-161, Berlin. Springer.

Hindriks, K. V. (2007).

Modules as Policy-Based Intentions: Modular Agent Programming in GOAL.
In Dastani, M., Fallah-Seghrouchni, A. E., Ricci, A., and Winikoff, M., editors, ProMAS, volume 4908 of Lecture
Notes in Computer Science, pages 156—171. Springer.

Hindriks, K. V. and Roberti, T. (2009).

GOAL as a Planning Formalism.
In Braubach, L., van der Hoek, W., Petta, P., and Pokahr, A., editors, MATES, volume 5774 of Lecture Notes in
Computer Science, pages 29—40. Springer.

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 200

@H@ TU Clausthal 6 References PUC

Clausthal University of Technology

@ Hubner, J. F., Boissier, O., and Bordini, R. H. (2010).

A normative organisation programming language for organisation management infrastructures.
Inetal., J. P., editor, Coordination, Organizations, Institutions and Norms in Agent Systems V, volume 6069 of LNAI,
pages 114-129. Springer.

@ Hubner, J. F., Boissier, O., Kitio, R., and Ricci, A. (2009).
Instrumenting Multi-Agent Organisations with Organisational Artifacts and Agents.
Journal of Autonomous Agents and Multi-Agent Systems.

@ Habner, J. F., Sichman, J. S., and Boissier, O. (2002a).

A model for the structural, functional, and deontic specification of organizations in multiagent systems.
In Bittencourt, G. and Ramalho, G. L., editors, Proceedings of the 16th Brazilian Symposium on Artificial Intelligence
(SBIA’02), volume 2507 of LNAI, pages 118-128, Berlin. Springer.

@ Habner, J. F., Sichman, J. S., and Boissier, O. (2002b).

MOISE+: Towards a Structural, Functional, and Deontic Model for MAS Organization.
In Castelfranchi, C. and Johnson, W. L., editors, Proc. of International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS-02), pages 501-502. ACM Press.

@ Huabner, J. F., Sichman, J. S., and Boissier, O. (2006).

S-MOISE+: A middleware for developing organised multi-agent systems.
In Boissier, O., Dignum, V., Matson, E., and Sichman,). S., editors, Coordination, Organizations, Institutions, and
Norms in Multi-Agent Systems, volume 3913 of LNCS, pages 64—78. Springer.

@ Hibner, J. F., Sichman, J. S., and Boissier, O. (2007).

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 200

@Hf* TU Clausthal 6 References PUC

Clausthal University of Technology

Developing Organised Multi-Agent Systems Using the MOISE+ Model: Programming Issues at the System and
Agent Levels.

Agent-Oriented Software Engineering, 1(3/4):370-395.

Jordan, H. R., Treanor, J., Lillis, D., Dragone, M., Collier, R. W., and O’Hare, G. M. P. (2010).

AF-ABLE in the Multi-Agent Programming Contest 2009.
Annals of Mathematics and Artificial Intelligence, 59(3-4):389—-409.

Lillis, D., Collier, R. W., Dragone, M., and O’Hare, G. M. P. (2009).

An Agent-Based Approach to Component Management.

In Proc. 8th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages
529-536.

Mascardi, V., Martelli, M., and Sterling, L. (2004).

Logic-Based Specification Languages for Intelligent Software Agents.

Theory and Practice of Logic Programming, 4(4):429-494.

Omicini, A., Ricci, A., and Viroli, M. (2008).

Artifacts in the A&A Meta-model for Multi-agent Systems.

Autonomous Agents and Multi-Agent Systems, 17(3).

) & = = =

Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., and Tummolini, L. (2004).

Coordination artifacts: Environment-based coordination for intelligent agents.
In Proc. of the 3rd Int. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS’04), volume 1, pages
286-293, New York, USA. ACM.

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 200

@Hf* TU Clausthal 6 References PUC

Clausthal University of Technology

@ Omicini, A., Sardina, S., and Vasconcelos, W. W., editors (2011).

Declarative Agent Languages and Technologies VIII - 8th International Workshop, DALT 2010, Toronto, Canada, May
10, 2010, Revised, Selected and Invited Papers, volume 6619 of Lecture Notes in Computer Science. Springer.

Piunti, M., Ricci, A., Boissier, O., and Hubner, . (2009).

Embodying organisations in multi-agent work environments.

In [EEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT 2009),
Milan, Italy.

Piunti, M., Ricci, A., Braubach, L., and Pokahr, A. (2008).

Goal-directed interactions in artifact-based mas: Jadex agents playing in CARTAGO environments.
In Proc. of the 2008 IEEE/WIC/ACM Int. Conf. on Web Intelligence and Intelligent Agent Technology (IAT’08),
volume 2. I[EEE Computer Society.

Pokahr, A., Braubach, L., and Lamersdorf, W. (2005).

Jadex: A BDI Reasoning Engine.

In Bordini, R. H., Dastani, M., Dix, |., and Fallah-Seghrouchni, A. E., editors, Multi-Agent Programming, volume 15
of Multiagent Systems, Artificial Societies, and Simulated Organizations, pages 149—174. Springer.

Rao, A. S. (1996).

AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Language.
In de Velde, W. V. and Perram, |. W., editors, Proc. 7th European Workshop on Modelling Autonomous Agents in a
Multi-agent World (MAAMAW), volume 1038 of Lecture Notes in Computer Science, pages 42—55. Springer.

B & B W @

Rao, A. S. and Georgeff, M. P. (1995).
BDI Agents: From Theory to Practice.

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 200

@Hﬁ TU Clausthal 6 References PUC

Clausthal University of Technology

In Lesser, V. R. and Gasser, L., editors, Proc. First International Conference on Multiagent Systems (ICMAS), pages
312-319. The MIT Press.
Ricci, A., Piunti, M., Acay, L. D., Bordini, R., Huibner, J., and Dastani, M. (2008).

Integrating artifact-based environments with heterogeneous agent-programming platforms.
In Proceedings of 7th International Conference on Agents and Multi Agents Systems (AAMAS08).

Ricci, A., Piunti, M., Viroli, M., and Omicini, A. (2009a).
Environment programming in CARTAGO.
In Multi-Agent Programming: Languages, Platforms and Applications,Vol.2. Springer.

Ricci, A., Piunti, M., Viroli, M., and Omicini, A. (2009b).

Environment Programming in CARTAGO.

In Bordini, R. H., Dastani, M., Dix, |., and El Fallah-Seghrouchni, A., editors, Multi-agent Programming: Languages,
Platforms and Applications, Vol. 2, pages 259-288. Springer.

Ricci, A., Santi, A., and Piunti, M. (2010).

Action and perception in multi-agent programming languages: From exogenous to endogenous environments.
In In Proceedings of International Workshop on Programming Multi-Agent Systems (ProMAS-8).

Ricci, A., Viroli, M., and Omicini, A. (2007a).

The A&A programming model & technology for developing agent environments in MAS.

In Dastani, M., El Fallah Seghrouchni, A., Ricci, A., and Winikoff, M., editors, Programming Multi-Agent Systems,
volume 4908 of LNAI, pages 91-109. Springer Berlin / Heidelberg.

B) B D D @

Ricci, A., Viroli, M., and Omicini, A. (2007b).

R. Bordini, . Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 200

@Hﬁl TU Clausthal 6 References PUCRS

Clausthal University of Technology

CArtAgO: A framework for prototyping artifact-based environments in MAS.

In Weyns, D., Parunak, H. V. D., and Michel, F., editors, Environments for MultiAgent Systems 111, volume 4389 of
LNAI, pages 67-86. Springer.

3rd International Workshop (E4MAS 2006), Hakodate, Japan, 8 May 2006. Selected Revised and Invited Papers.

Searle, |. R. (1969).

Speech Acts: An Essay in the Philosophy of Language.
Cambridge University Press, Cambridge.

Stocker, R., Sierhuis, M., Dennis, L. A., Dixon, C., and Fisher, M. (2011).

A Formal Semantics for Brahms.

In Proc. 12th International Workshop on Computational Logic in Multi-agent Systems (CLIMA), volume 6814 of
Lecture Notes in Computer Science, pages 259—274. Springer.

van Putten, B.-J., Dignum, V., Sierhuis, M., and Wolfe, S. R. (2008).

OperA and Brahms: A Symphony?

In Proc. 9th International Workshop on Agent-Oriented Software Engineering (AOSE), volume 5386 of Lecture Notes
in Computer Science, pages 257-271. Springer.

van Riemsdijk, B., Dastani, M., and Meyer, J.-J. C. (2005).

Semantics of Declarative Goals in Agent Programming.
In Proc. 4th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages
133-140. ACM.

R. Bordini,]. Dix - Chapter 13: Multi-Agent Systems, Ed. G. Weiss MIT Press, May 2012 200

	History and the MAOP Paradigm
	Examples of Programming Languages
	Organisation and Environment Programming
	An Example in JaCaMo
	References

