
MULTIAGENT PLANNING, 

CONTROL, AND EXECUTIONCONTROL, AND EXECUTION

Chapter 11 of

Multiagent Systems: A Modern Approach

http://www.the-mas-book.info

E. Durfee and S. Zilberstein



Planning

• Necessary when near-term choices of actions 
can enable, or prevent, later action choices 
required to achieve goals.

• Possible when agent possesses a sufficiently • Possible when agent possesses a sufficiently 
detailed and correct model of the 
environment, and of how actions affect the 
environment.

• Challenging because the space of possible 
plans grows exponentially with the plan 
duration.



Multiagent Planning

• Now the near-term choices of actions can enable, 
or prevent, later action choices of others required 
to achieve goals, and others’ near-term actions 
can affect the agent’s later choices too.

• Possible when agents can explicitly or implicitly • Possible when agents can explicitly or implicitly 
model others’ plans, and predict outcomes in the 
environment of executing the plans jointly.

• Challenging because the space of possible 
individual plans grows exponentially with the 
plan duration, and of multiagent plans grows 
exponentially in the number of agents.



Multiagent Planning, Control, and 

Execution

• Assuming that agents are cooperative:

– Strive to maximize some joint performance 
measure

• Agents’ planned activities should dovetail well 
to maximize achievement of joint objectives.

• Agents’ planned activities should dovetail well 
to maximize achievement of joint objectives.

• Agents’ immediate control decisions should 
jointly contribute to improving collective state.

• Agents should monitor outcomes of joint 
actions and progress of joint plans to execute 
as a responsive multiagent team.



Problem Structure: Composition

• Each agent’s state is factored:

– State is represented as a set of features

– A feature might only be affected by particular 

actionsactions

• Multiagent state is also factored:

– Different agents will perceive, and be able to 

change, different (but possibly overlapping) 

features of the joint environment

– Some features might be purely local to a particular 

agent.



Problem Structure: Locality

• Efficient single-agent planning/control relies on 
assumptions of locality:

– An action only affects a (small) subset of state features

– Most of the state features are unaffected by any 
particular actionparticular action

• Efficient multiagent planning/control extends the 
locality assumption:

– An action taken by one agent only affects a limited 
number of other agents’ states

– As well as only a localized subset of each of their state 
features

– Hence, agents are loosely- (aka weakly-) coupled



What Aspects Are Multiagent?

• Multiagent planning/control could refer to just 

the product of the planning/control process:

– A centralized process builds a plan/control 

representation that specifies how each of multiple representation that specifies how each of multiple 

agents should behave

• Multiagent planning/control could refer to the 

process of formulating plan/control decisions:

– Multiple agents participate in the construction of 

a single plan or control policy



What Aspects Are Multiagent?

• Both the product and the process are 

multiagent:

– Each agent applies its local expertise and 

awareness to construct its local plan.awareness to construct its local plan.

– Agents use communication, and/or shared 

knowledge and biases, to shape their local plans 

to conform better to others’ plans, in order to 

more effectively achieve collective objectives.  



Flavors of Multiagent Planning/Control

• Coordination prior to local planning/control

– Committing to how to work together, and then 
making suitable local planning/control decisions

• Local planning/control prior to coordination• Local planning/control prior to coordination

– Formulating local plan/control decisions 
separately, then adjusting them for coordination

• Decision-Theoretic Multiagent Planning

– Multiagent planning in the face of non-
determinism and partial observability

• Dynamic multiagent planning/control

– Monitoring and replanning during execution



Coordination Prior to Local Planning

• Formulate interaction plans/rules beforehand, 
and commit to following them

– Example: Message-exchange protocol defining 
interpretations of and allowable responses to 
(sequences) of communicative acts(sequences) of communicative acts

• Main ideas:

– Core aspects about what coordination decisions 
will need to be made and how they will be 
resolved are known ahead of time

– Details of agents’ plans specific to a particular 
problem instance can fit into the predefined 
coordination framework



Social Laws

• Basic idea: Identify joint states that should be 

avoided, and impose restrictions (laws) on 

agents’ action choices to prevent them.

• Canonical example: Avoid collisions.• Canonical example: Avoid collisions.

– Mobile robots moving in an open space risk 

colliding with and disabling each other.

– Yet, centrally controlling all of their motions is 

overkill: micromanaging largely-independent 

behaviors, potential single point of failure, and 

scales poorly as number of robots grows



Social Laws for Collision Prevention

• First pass: Never enter a location that is occupied.

– Does not account for simultaneous movement, when 

more than one robot enters the same (previously) 

unoccupied location.

• Second pass: Restrict direction from which a 

location can be entered to only one choice.

– Now, collision cannot occur if world begins in a “safe” 

state.

– Creates equivalent of “one-way” locations.

– Need to be careful in the creation of these to ensure 

that every location can eventually be reached.



Social Laws in Grid Environment

• So long as agents start in different locations, and keep moving at 
every step in the dictated direction, then eventually each can transit 
between any pair of locations.

• Hence, they can independently plan the order of picking up and 
dropping off items, making all deliveries without fear of collisioin.

• But distance traveled will generally be larger than the minimum 
necessary.



Conventions

• Flip side of social laws to encourage, rather than 
prohibit, particular outcomes

• Basic idea: Identify joint states that are preferred, 
and impose restrictions (laws) on agents’ action 
choices so as to achieve them.choices so as to achieve them.

• Canonical example: Shared awareness of goals.

– If an agent that is cooperating on a goal with others 
comes to believe that achieving the goal is impossible,

– Then rationality would dictate that it stop taking 
actions associated with achieving the goal,

– And by convention must inform the cooperating 
agents so that they also avoid wasting effort.



Social Laws/Conventions Formation

1. Identify joint states that should be avoided (or 
sought).

2. Work backward through agents’ joint actions to 
identify possible precursor states to the states to 
avoid (seek).avoid (seek).

3. Impose constraints on agents’ choices of actions 
in the precursor states to prevent (or require) 
reaching the states to avoid (seek).

4. Recurse: If no action choices exist in a precursor 
state that avoid (attain) the target state, then 
the precursor state itself becomes a state to be 
avoided (sought). 



Some Social Laws/Conventions 

Challenges

• Identifying prior to agent execution all of the states 
that should be avoided (sought).

– When state space is large/infinite, some bad (good) states 
might be missed.

– New laws/conventions could need to be legislated – New laws/conventions could need to be legislated 
dynamically in response to unexpected outcomes.

• Different laws could achieve the same (safety) results 
but have significant impacts on performance.

– E.g., Cars drive east-west on even days, north-south on 
odd

• Pushed further, then performance might get even 
better if different laws apply to different agents.

– E.g., Fire trucks have authority to violate some laws



Organizational Structuring

• Basic idea: Assign complementary roles to 

agents, where agents’ roles bias their choices 

of actions and lead to better cooperative 

behavior.behavior.

• Canonical example: Sensor networks.

– Agents in different locations are responsible for 

monitoring complementary regions,

– Some agents might have particular responsibility 

for fusing sensed data/interpretations of others.



Organizational Structuring

• Basic idea: Assign complementary roles to 
agents, where agents’ roles bias their choices 
of actions and lead to better cooperative 
behavior.

• Canonical example: Sensor networks.

– Agents in different locations are responsible for 
monitoring complementary regions,

– Agemts with different sensing modalities are 
responsible for detecting particular phenomena,

– Some agents might have particular responsibility 
for fusing sensed data/interpretations of others.



Organizational Design

• Encode in computational form the 
roles/protocols exhibited by humans.

• Detect patterns of recurrent interactions among 
agents working from first principles, and compile 
these into roles and protocols.these into roles and protocols.

• Decompose the task from the top down, and 
base roles on subtasks and interactions on 
subtask relationships.

• Define a space of organizational designs, and 
search over that space, using expectations about 
the task-environment to evaluate alternative 
(partial) organizational designs.



ORGANIZATIONSEARCH

Initialize space of candidate partial organizations with a 
single candidate with the overall goal as its single 
(leaf) node.

1. Generate expansions of a candidate partial 
organization by finding an unbound goal leaf in its 
decomposition hierarchy, and replacing it either with decomposition hierarchy, and replacing it either with 
a role-goal binding (e.g., assigning it to an agent 
capability), or with a subgoal tree that decomposes it 
further.

2. Repeat step 1 until all leaves have associated roles.

3. Use information about available agents’ capabilities to 
assign agents to the roles.

4. If all roles assigned, return organization; else, 
backtrack to try different decompositions.



Organization Execution

• A purpose of adopting an organization is to 
simplify the operational control decisions of 
the agents:

– The organizational biases should lead agents 
towards compatible activities, so an agent towards compatible activities, so an agent 
following its role specifications should not need to 
model what others are doing.

• This can lead to good, but suboptimal, 
performance:

– Organizational inefficiencies can arise from lack of 
detailed awareness of concurrent activities across 
the organization.



Functionally-Accurate Cooperation

• A characterization of organizational 
performance:

– Agents’ decisions lead to accurate functioning of 
the collective, in the limit, even though at any 
given time the system might not be completely given time the system might not be completely 
accurate.

– Agents’ actions cooperatively lead to proper 
functional performance, even though no single 
agent can achieve that performance alone.

• FAC posits that, given enough time and 
information exchange, agents will eventually 
converge on good global solutions.



FAC Applications

• FAC is appropriate for cognitive tasks where 

multiple, tentative, partial solutions can be 

considered at once:

– Interpretation of sensor network data.– Interpretation of sensor network data.

– Design of an artifact, plan, process, etc.

• FAC agents typically utilize architectures that 

expedite the efficient storage and retrieval of 

tentative partial solutions:

– E.g., Blackboard architectures.



FAC Agent Interactions

• Exchange of tentative partial solutions increases:
– Completeness of solutions (combination).

– Confidence in solutions (corroboration).

– Precision of solutions (refinement).

• Uncontrolled, exchange can engender distraction • Uncontrolled, exchange can engender distraction 
and duplication of effort.

• For this reason, FAC often combined with 
organizational structuring:
– Agents’ roles and responsibilities bias their decisions 

about what to exchange, what to work on locally, etc.

– Communication protocols guide timing decisions 
about how locally-complete a hypothesis should be 
before it is shared with other agents



Agent Interaction Variations

• Rather than voluntarily exchanging information 
unprompted, protocol could be request-driven:
– Agent identifies characteristics of information that would 

be helpful to have, and queries others for it.

– Whom to ask can be guided by organizational knowledge.

– Asking can in fact influence behavior of asked agents to – Asking can in fact influence behavior of asked agents to 
prioritize finding an answer.

– Can be more efficient, but introduces more delay in 
information exchange (2 rounds of message passing 
instead of 1).

• Reducing rounds of iterative communication can also 
be accomplished by conveying multiple tentative 
hypotheses in the same round:
– E.g., several available times for scheduling a meeting.

• Repetition (“murmuring”) for undependable channels.



Result-Sharing vs. Task-Sharing

• FAC with Organizational Structuring assumes that 
agents’ different roles inherently distribute tasks 
among them, so joint problem solving involves 
sharing partial, tentative results.

• A common alternative of moving results to agents • A common alternative of moving results to agents 
whose tasks (roles) need them, is to instead move 
tasks to agents that can do them.

• That is, cooperative problem solving involves 
identifying how and where agents should share 
tasks such that tasks are assigned to agents that 
are best able to do them.



Task-Sharing Protocols

• A protocol in this context represents a template for a 
pre-defined plan:
– To achieve the goal of assigning tasks/roles to agents most 

able to do them;

– The protocol provides a communication plan template for 
the agents to follow;the agents to follow;

– Where the specific tasks/roles to be done, and how agents 
can express their suitability for doing them, can vary.

• Formulating protocols is similar to social laws and 
organizational structures:
– Identify desirable states of the world (e.g., tasks/roles 

distributed well);

– Identify patterns of actions that if jointly followed will 
bring those states about.



Contract-Net Protocol Example

• The first well-studied multiagent protocol.

• Investigated in the context of distributed 

sensor net establishment (DSNE):

– Given high-level goal of monitoring a region;– Given high-level goal of monitoring a region;

– Decompose overall monitoring objective into a set 

of smaller roles (e.g., regions to monitor, fusion of 

results from different regions).

– Discover agents whose positions and/or resources 

permit them to perform the roles, and assign the 

roles accordingly.



Contract-Net Protocol Process

1. An agent whose role/task exceeds its abilities decomposes 
the role/task into pieces that, if all performed, achieve the 
desired performance.

2. For each subrole/task, this Manager agent initiates the 
contracting protocol:

1. It formulates a task-announcement message describing the 1. It formulates a task-announcement message describing the 
task, the capabilities required of agents eligible to accept the 
task, and the contents of a bid for the task.

2. It broadcasts the message, or if it has knowledge about which 
agents are likely candidates it can address the announcement 
just to them.

In the DSNE domain, an announcement message could 
indicate the regional coverage needed by whomever takes 

on the role, and the bid specification might request a 
summary of the sensory capabilities/limits of the 

potential recipient of the role/task.



Contract-Net Protocol Process (2)

3. A potential Contractor agent receiving an announcement 
message:

1. Confirms that it satisfies the eligibility requirements;

2. Uses the task/role description to determine the degree to which is it 
willing and able to perform the role/task;

3. Generates and submits a bid in the specified format.

4. The Manager agent :4. The Manager agent :
1. Collects the bids sent by the contractors.

2. If no (acceptable) bids are received, it sends out a revised 
announcement (relaxing eligibility requirements, or modifying the 
expectations of the role/task.

3. If acceptable bids are received, it accepts one (or more, if 
redundancy is needed for robustness) and awards the task/role.

In the DSNE domain, the Manager might need to carve up the region 
differently to better match the spatial arrangement of existing 
sensors.  If the right placements of sensors are available, it will 

decide which sensor in each subregion is “best” (is most reliable, 
powerful, available…) and assign the roles accordingly.



Contract-Net Protocol Process (3)

5. A winning Contractor adopts the assigned role/task, which could 
require that it withdraw bids sent to other managers.

6. It performs its role/task:
1. It could further decompose its task, recursively invoking the 

Contract-Net protocol

2. It could send interim reports back to the Manager reporting on its 
progress/results so far.progress/results so far.

7. When the task/role is completed, it sends final information to the 
Manager.

8. Upon receiving reports, the Manager:
1. Combines reports from the different Contractors to synthesize a full 

view of the (tentative) global solution.

2. Cancels or redirects Contractors if collective performance is not on a 
satisfactory trajectory.

In the DSNE domain, Contractors will monitor their assigned regions, 
sharing partial maps of the phenomena detected in their regions 
with the Manager, which will compose these results into a global 

view of the phenomena.



Tradeoffs About When to Coordinate

• Coordination first, like in social laws and 
organizational structuring, decouples agents’ 
local problems so that they can plan (and replan) 
independently.

• But, as has been seen, imposing the coordination • But, as has been seen, imposing the coordination 
constraints might be overkill for any particular 
problem instance:
– Laws unnecessarily restrictive

– Organizational inefficiencies.

• Alternative is to wait until agents know what they 
want to do, and then coordinate their particular 
plans rather than coordinating for all possible 
plans.



Local Planning Prior to Coordination

• Appeals to locality and decomposability 

arguments

– That the collective endeavor is composed of largely 

independent activities done by individuals.

– And that interdependencies are local to small 

numbers of individuals.

• This argues for a divide-and-conquer approach:

– Each individual plans as if it were completely 

independent.

– Then any interdependencies are identified and 

resolved.



Multiagent Plan Coordination Problem 

(MPCP)

• Finds a multiagent plan that is a combination of 

agents’ local plans, adjusted to account for 

interdependencies.

• Resulting plan could differ from a multiagent plan • Resulting plan could differ from a multiagent plan 

that considers the full space of joint actions.

• Has a distributed constraint satisfaction flavor:

– Assignments of variables (plans or pieces of plans) 

that satisfy local and interagent constraints.

– But domain of variables (plan spaces) are too large to 

enumerate, and constraints can be expensive to 

check.



Basic MPCP Approach

1. Each agent builds its own plan as if it were 
alone.

2. Agents directly, or through a more centralized 
intermediary, identify potential 
conflicts/inefficiencies that could arise during conflicts/inefficiencies that could arise during 
joint execution.

3. To resolve such problems, agents inject 
additional constraints (for example, semaphores 
to prevent bad combinations of actions).

4. If all problems prevented, then done.  Else, one 
or more agents formulates an alternative local 
plan and the process repeats.



State-Space MPCP Approach

• Detects problems in joint execution by projecting 
forward through plan execution, in a graph-
planning manner.
1. From current state, consider combination of actions 

consisting of the next action of each agents’ plan.consisting of the next action of each agents’ plan.

2. Using mutex concepts, identify impermissible 
combinations of actions.

3. Impose timing constraints that prevent mutex
actions, postponing some of them, to create a legal 
next “current” state, and repeat the process.

• The process above can search over different 
choices of which actions to postpone to 
ultimately find a joint execution sequence that 
achieves the agents’ combined goals.



Plan Combination Search
Ephrati & Rosenschein, AAAI 1994

• Variation on state-space MPCP techniques.

• Each agent starts with a space of plans that can 
achieve its goals.

• Mutex can rule out particular combinations of 
agents’ plans, but least-commitment of 

• Mutex can rule out particular combinations of 
agents’ plans, but least-commitment of 
maintaining a space of plans supports finding 
better (nearly optimal) joint plans.

• A* search technique to explore alternative paths 
through action combinations, where heuristic 
includes estimated further costs from a particular 
joint state to a goal-satisfying state.



Plan-Space MPCP Approach

• Instead of using agents’ individual plans to 

search through the spaces of joint states that 

they might induce;

• Search through a space of joint plans of the • Search through a space of joint plans of the 

agents.

• Builds on single-agent planning techniques, 

and in particular partial-order causal-link 

(POCL) planning.



Single-Agent POCL Plan

• A partial-order causal-link plan is defined as:



Single-Agent POCL Planning

1. Initialize the plan with the init and goal steps.

2. While there is a flaw (a causal-link conflict or 

an open precondition):

1. Select a flaw to eliminate.1. Select a flaw to eliminate.

2. Eliminate that flaw:

• Add ordering constraints to resolve conflict.

• Add causal link (and a new step creating it if needed) 

to resolve open precondition.

3. When no flaws remain, return plan.



Example Single-Agent POCL Planning 

Problem

Blocks world with blocks A, B, C, and D

Goal: Block A should be on block B.

Initial state:



Example Single-Agent POCL Planning 

Solution

• 3 new steps introduced.

• Moving C from A to Table, and D from B to 

Table, are unordered wrt each other, but 

both must precede moving A from Table to B.



Different Single-Agent POCL Plan
• Same initial state, but goal is that block B should be 

on block C.

• Requires adding 2 new steps, and creates a totally-
ordered plan.



Parallel POCL Plan
• Whether single-agent or multiagent, need to account for 

possibility that more than one action can happen at a 
time.

• Plan specification needs to express whether steps must be 
taken simultaenously, or must not be taken 
simultaneously.

• This introduces another type of possible flaw, 
corresponding to mutually-exclusive steps due to 
inconsistent effects:



Multiagent POCL Plan

A parallel POCL plan that expresses the assignments 

of which agents are responsible for which steps:



Uncoordinated Multiagent POCL Plan
Combines the 2 single-agent plans.

Requires that both initial states, and both goal states, be 
concurrent.



Multiagent Plan Coordination Problem

Rearrange ordering constraints and causal links so 

as to resolve all flaws;

Without adding any new steps.

Example: Move(A,T,B) Example: Move(A,T,B) 

threatens Cl(B) 

causal link 

between 

Move(D,B,T) and 

Move(B,T,C).



Multiagent Plan Coordination Process

The combined agents’ plans represent a (flawed) plan:

Utilize the standar POCL planning algorithm of finding and 
repairing flaws.

Example: Adding a 
temporal
ordering ordering 
constraint 
resolves threat. 



Redundancy Flaw
Even with causal-link threat resolved, resulting multiagent plan 

arguably still is flawed:
– Redundant “Move(D,B,T)” actions could lead to misbehavior 

(collision at block; an agent doing the move, and then the other 
putting D back on B so that it can do the move too…)



Plan Step Redundancy

Explicitly represent and resolve this type of flaw.

Redundancy flaws can be repaired by searching for a 
way to redirect the causal links coming from one 
step so that all instead come from other existing 
steps.



Fully Coordinated Multiagent POCL 

Plan
All flaws have been resolved:



Multiagent Plan Coordination by Plan 

Modification Algorithm



Hierarchical Planning

• A plan-space planning approach:

– Incrementally creates a plan by refining more 
abstract plan steps, expanding them into more 
detailed subplans.

– Exploits knowledge captured in the form of a – Exploits knowledge captured in the form of a 
library of subplans: rather than constructing a plan 
directly as a search through primitive executable 
actions, retrieve and combine subplans that have 
been prebuilt to achieve typical (sub)goals.

– The planning process is complete when the plan is 
refined down to the level of executable actions.



Multiagent Hierarchical Planning

• Extends the notion of an abstract plan step:

– Not only abstracting over time, but also over 
performer of actions.

– Team-oriented programming mindset: Abstract 
actions can correspond to a group activity, where actions can correspond to a group activity, where 
refinements of those actions break down the 
different roles/tasks of agents.

– In this sense, very much like organizational 
structuring:

• Differs in the Organizational Structure is assumed to 
persist over multiple problem instances, where 
multiagent hierarchical planning would formulate a plan 
for a particular problem instance.



Hierarchical Coordination

• Basic ideas: 
– Modifications to agents’ individual plans to achieve 

coordination don’t have to be done at the most 
primitive level.

– Plans at abstract levels are smaller and simpler, making 
coordination easier.coordination easier.

• Strategy:
– Work downward from abstract plans to discover and 

resolve flaws.

– Decide whether to resolve a flaw at an abstract level 
(potentially introducing more constraints than needed) 
or to expend the effort to look for how the flaw 
manifests at a more detailed level, to restrict 
coordination constraints more narrowly where needed.



Hierarchical Behavior-Space Search

1. Initialize the current-abstraction-level to the most abstract level.

2. Agents exchange descriptions of the plans and goals of interest at the 
current level.

3. Remove plans with no potential conflicts.  If the set is empty then done; 
else decide whether to resolve conflicts at the current level or at a 
deeper level.

4. If conflicts are to be resolved at a deeper level, set the current-4. If conflicts are to be resolved at a deeper level, set the current-
abstraction-level to the next deeper level and set the plans/goals of 
interest to the refinements of the plans with potential conflicts.  Go to 
step 2.

5. If conflicts are to be resolved at this level:
a) Agents form a total order.  Top agent is the current superior.

b) Current superior sends down its plan to the others.

c) Other agents change their plans to work properly with plan of current 
superior, without introducing new conflicts with past superiors.

d) Once no further changes needed in plans of the inferior agents, the current 
superior becomes a previous superior and the next agent in the total order 
becomes the superior.  Loop back to step b.  If there is no next agent, then 
the protocol terminates and agents have coordinated their plans.



Decision-Theoretic MA Planning

• A group of agents interact in a stochastic environment

• Each “episode” involves a sequence of decisions over 

some finite or infinite horizon

• The change in the environment is determined • The change in the environment is determined 

stochastically by the current state and the set of actions

taken by the agents

• Each decision maker obtains different partial

observations of the overall situation

• Decision makers have the same objectives characterized 

by a single reward function



Applications

• Autonomous rovers for space   

exploration

• Protocol design for multi-access 

broadcast channelsbroadcast channels

• Coordination of mobile robots

• Decentralized detection and 

target tracking

• Decentralized detection of 

hazardous weather events 



Markov Decision Process (MDP)

• Expressive model for stochastic planning

a

s, r
WorldWorld

• Expressive model for stochastic planning

• Originated in operations research in the 1950s

• Adopted by the AI community as a framework for 

planning and learning under uncertainty

• Can be solved efficiently by DP algorithms and a range 

of search and abstraction methods

• Everything is an MDP – just keep adding states!



Partially Observable MDP

• Generalization formulated in the 1960s [ ]

a

o r RewardRewardWorldWorld

• Generalization formulated in the 1960s [Astrom 65]

• The agent receives noisy observations of the underlying 

world state

• Need to remember previous observations in order to 

act optimally

• More difficult, but there are DP algorithms 

[Smallwood & Sondik 73]



Decentralized POMDP 

a1

o1

a2

1

r RewardRewardWorldWorld

• Generalization of POMDP involving multiple cooperating 

decision makers, each receiving a different partial

observation after a joint action is taken

o2

a2

2

r



DEC-POMDPs



Subclasses and Related Models

• Decentralized MDP (DEC-MDP):  DEC-POMDP in which the 

combined observations of all the agents provide perfect 

information about the underlying world state

• Multiagent MDP (MMDP):  DEC-MDP in which each agent has 

perfect information about the underlying stateperfect information about the underlying state

• Partially-Observable Stochastic Game (POSG): Generalization 

of DEC-POMDP in which each agent can have a different 

objective function.

• Interactive POMDP (I-POMDP):  A model in which each agent 

explicitly represents beliefs about the other agents and about 

the world state.



Relationship Between Models 

POSG

Relationships among the various decision-theoretic models

DEC-POMDP
DEC-POMDP-COM

MTDP

POSG

I-POMDP
(finitely nested)

POMDP MDP DEC-MDP



Example: Mobile Robot Planning

States: grid cell pairs

Actions: ↑,↓,←,→Actions: ↑,↓,←,→

Transitions: noisy

Goal: meet quickly

Observations: red lines         



Example: Cooperative Box-Pushing

Goal: push as many boxes as possible to goal area; 

larger box has higher reward, but requires two agents 

to be moved.



Example: Multiagent Tiger Problem

• A simple toy problem used for illustration with 2 agents, 2 

states, 3 actions and 2 observations [Nair et al. 03]

• Two agents are situated in a room with two doors. Behind one 

door is a tiger and behind the other is a large treasure. 

• Each agent may open one of the doors or listen. If either • Each agent may open one of the doors or listen. If either 

agent opens the door with the tiger behind it, a large penalty 

is given. If the door with the treasure behind it is opened and 

the tiger door is not, a reward is given. If both agents choose 

the same action a larger positive reward or a smaller penalty 

is given to reward cooperation.

• Listening incurs a small cost and provide a noisy observation 

of which door the tiger is behind.



Solution Representation

• Each agent’s behavior is described by a local policy δi

• Policy can be represented as a mapping from

– Local observation sequences to actions; or–

– Local memory states to actions

• Actions can be selected deterministically or 

stochastically

• Goal is to maximize expected reward over a finite 

horizon or discounted infinite horizon



Solutions as Policy Trees
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• Each node is labeled with an action and each edge with an 

observation that could be received

• Policy tree shown above is optimal for the multiagent tiger 

problem with horizon 5. (Same tree assigned to both agents)

L L

L L 

hl hr 

L L 

hl hr 

OR 

hl hr 

L

hl hr 

L

hr hl 

OL 

hr hl 

L

L L

L L 

hl hr 

L L 

hl hr 

OR L

hl hr hl hr hr hl 

OL 

hr hl 

LLOR OR OR OL OL OL 



Solutions as Finite-State Controllers

Agent 1 Agent 2 

L L 
hl 

OR 
hl 

hr, hl 

hr 

L L 
hr 

OL 
hr 

hr, hl 

hl 

• Each controller state is labeled with an action and edges 

between states are labeled with observations.

• Shown above are optimal three-node deterministic controllers 

for the multiagent tiger problem.

• Green arrow designate the initial state of the controller.
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Solutions as Finite-State Controllers

hr hr hr hl hl hl 

Agent 1 

L 

hr 

L L 

hr, hl 

hr 

OR 

Agent 2 

L 

hl 
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hr, hl 

hl 

OL 

hl hr 

• Optimal four-node deterministic controllers for the multiagent 

tiger problem.

• The policies assigned to the agents are different.



Stochastic Controllers

OR 

L 
hl 

0.125 

0.875 

1.0 

hr, hl 

1.0 

hr 
1.0 

Agent 1 

OL 

L 
hr 

0.125 

0.875 

1.0 

hr, hl 

1.0 

hl 1.0 

Agent 2 

• Stochastic two-node controllers for multiagent tiger.

• In each controller state, actions are selected stochastically; 

when an observation is obtained, the transition to a new state 

is also stochastic.
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Evaluating Solutions

• For a finite-horizon problem with initial state s0 and T

time steps, the value of a joint policy δ is

• For an infinite-horizon problem, with initial state s0 and 

discount factor γ in [0;1), the value of a joint policy δ is



Previous Complexity Results

MDP P-complete 
( if T < |S| )

Papadimitriou & 

Tsitsiklis 87

POMDP PSPACE- complete Papadimitriou & 

Finite Horizon

POMDP PSPACE- complete 
( if T < |S|)

Papadimitriou & 

Tsitsiklis 87

MDP P-complete Papadimitriou & 

Tsitsiklis 87

POMDP Undecidable Madani et al. 99

Infinite-Horizon Discounted



How Hard are DEC-POMDPs? 
Bernstein, Givan, Immerman & Zilberstein, UAI 2000, MOR 2002

• A static version of the problem, where a single set of 

decisions is made in response to a set of observations, 

was shown to be NP-hard [Tsitsiklis and Athan, 1985]

• Bernstein et al. proved that two-agent finite-horizon • Bernstein et al. proved that two-agent finite-horizon 

DEC-POMDPs are NEXP-hard via a reduction to TILING

• But these are worst-case results! 

Are real-world problems easier?



What Features of the Domain Affect 

the Complexity and How?

• Factored state spaces (structured domains)

• Independent transitions (IT)

• Independent observations (IO)• Independent observations (IO)

• Structured reward function (SR)

• Goal-oriented objectives (GO)

• Degree of observability (partial, full, jointly full)

• Degree and structure of interaction

• Degree of information sharing and communication



NP-C NEXP-C  

NEXP-C  

Complexity of Sub-Classes
Goldman & Zilberstein, JAIR 2004

Finite-Horizon

DEC-MDP

NP-C

P-CP-C

NP-C

NP-C NEXP-C  

IO & IT Goal Oriented

Goal Oriented

|G| = 1 |G| > 1
Certain Conditions

w/ Sharing
Information



Solving Finite-Horizon DEC-POMDPs



JESP: First DP Algorithm
Nair, Tambe, Yokoo, Pynadath & Marsella, IJCAI 2003

• JESP: Joint 

Equilibrium-

based Search for based Search for 

Policies

• Complexity: 

exponential

• Result: only 

locally optimal 

solutions



Is Exact DP Possible?

• The key to solving POMDPs is that they can be viewed as 

belief-state MDPs [Smallwood & Sondik 73]

• Not as clear how to define a belief-state MDP for a     •
DEC-POMDP

• The first exact DP algorithm for finite-horizon  DEC-

POMDPs used the notion of a generalized belief state

• The algorithm also applies to competitive situations 

modeled as POSGs



Generalized Belief State

A generalized belief state captures the uncertainty of 

one agent with respect to the state of the world as well 

as the policies of other agents.



Strategy Elimination

• Any finite-horizon DEC-POMDP can be converted to a 

normal form game

• But the number of strategies is doubly exponential

in the horizon length!in the horizon length!
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A Better Way to Do Elimination
Hansen, Bernstein & Zilberstein, AAAI 2004

• We can use dynamic programming to eliminate 

dominated strategies without first converting to 

normal form

• Pruning a subtree eliminates the set of trees • Pruning a subtree eliminates the set of trees 

containing it

a1

a1 a2

a2 a2 a3 a3

o1

o1 o2 o1 o2

o

2

a3

a2 a1

o1 o2

a2

a2 a3

a3 a2 a2 a1

o1

o1 o2 o1 o2

o

2

prune

eliminate



Generalizing Dynamic Programming

• Build policy trees as in single agent case

• Pruning rule is a natural generalization

What to prune Space for pruning

Normal form game strategy
∆(strategies of     
other agents)

POMDP policy tree ∆(states)

POSG

DEC-POMDP
policy tree

∆(states × policy trees 
of other agents)

What to prune Space for pruning



Exact DP for DEC-POMDPs
Hansen, Bernstein & Zilberstein, AAAI 2004

� Algorithm is 

complete & optimal

� Complexity is double 

• Theorem: DP performs iterated elimination of dominated 

strategies in the normal form of the POSG.

• Corollary: DP can be used to find an optimal joint policy in a 

DEC-POMDP.

� Complexity is double 

exponential



Memory-Bounded DP (MBDP)
Seuken & Zilberstein, IJCAI 2007

• Combining two approaches:

– The DP algorithm that operates bottom-up

– Heuristic search that operates top-down

• The DP step can only eliminate a policy tree if it is • The DP step can only eliminate a policy tree if it is 

dominated for every belief state

• But, only a small subset of the belief space is actually 

reachable

• Furthermore, the combined approach allows the 

algorithm to focus on a small subset of joint policies that 

appear best 



Memory-Bounded DP Cont.



The MBDP Algorithm



Generating “Good” Belief States

• MDP Heuristic -- Obtained by solving the corresponding 

fully-observable multiagent MDP

• Infinite-Horizon Heuristic -- Obtained by solving the 

corresponding infinite-horizon DEC-POMDPcorresponding infinite-horizon DEC-POMDP

• Random Policy Heuristic -- Could augment another 

heuristic by adding random exploration

• Heuristic Portfolio  -- Maintain a set of belief states 

generated by a set of different heuristics

• Recursive MBDP



Performance of MBDP



MBDP Parameter Tuning

The best parameter settings and solution values for the 

tiger problem with horizon 20 for given time limits.



MBDP Successors

• Improved MBDP (IMBDP)
[Seuken and Zilberstein, UAI 2007]

• MBDP with Observation Compression (MBDP-OC)
[Carlin and Zilberstein, AAMAS 2008]

• Point Based Incremental Pruning (PBIP)• Point Based Incremental Pruning (PBIP)
[Dibangoye, Mouaddib, and Chaib-draa, AAMAS 2009]

• PBIP with Incremental Policy Generation (PBIP-IPG)
[Amato, Dibagoye, Zilberstein, AAAI 2009]

• Constraint-Based Dynamic Programming (CBDP)
[Kumar and Zilberstein, AAMAS 2009]

• Point-Based Backup for Decentralized POMDPs
[Kumar and Zilberstein, AAMAS 2010]

• Point-Based Policy Generation (PBPG)
[Wu, Zilberstein, and Chen, AAMAS 2010]



Why Does MBDP Work?

• Perform search in a reduced

policy space

• Exact algorithm performs only 

lossless pruning lossless pruning 

• Approximate algorithms rely on 

more aggressive pruning

• MBDP represents an exponential 

size policy with linear space 

O(maxTrees × T)

• Resulting policy is an acyclic 

finite-state controller.



Solving Infinite-Horizon DEC-POMDPs

• Unclear how to define a compact belief-state without 

fixing the policies of other agents

• Value iteration does not generalize to the infinite-

horizon casehorizon case

• Can generalize policy iteration for POMDPs

[Hansen 98, Poupart & Boutilier 04]

• Basic idea: Representing local policies using

(deterministic/stochastic) finite-state controllers and 

defining a set of controller transformations that 

guarantee improvement & convergence 



Policies as Controllers 

• Finite state controller represents each policy

– Fixed memory

– Randomness used to offset memory limitations 

– Action selection, i : Qi → ∆Ai– Action selection, i : Qi → ∆Ai

– Transitions, i : Qi × Ai × Oi → ∆Qi

• Value of two-agent joint controller given by the Bellman 

equation:
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Controller Example

a1

• Stochastic controller for one agent

– 2 nodes, 2 actions, 2 observations 

– Parameters

• P(a | q )

o1

o

a1

a1

a2

o1

• P(ai | qi)

• P(qi | qi, oi)

1 2

o2
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0.5
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0.25
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Finding Optimal Controllers

• How can we search the space of possible joint 

controllers?

• How do we set the parameters of the controllers to 

maximize value?maximize value?

• Deterministic controllers – can use traditional search 

methods such as BSF or B&B

• Stochastic controllers – continuous optimization problem

• Key question: how to best use a limited amount of

memory to optimize value?



Independent Joint Controllers

• Local controller for agent i

is defined by conditional 

distribution P(ai, qi | qi, oi)

• Independent joint 

'

• Independent joint 

controller is expressed by: 

Πi P(ai, qi | qi, oi)

• Can be represented as a 

dynamic Bayes net

'



Correlated Joint Controllers
Bernstein, Hansen & Zilberstein, IJCAI 2005, JAIR 2009

� A correlation device, [Qc,ψ], is a set of nodes and a 
stochastic state transition function

'''

� Joint controller:

∑q P(qc|qc) Πi P(ai, qi | qi, oi, qc)
'''∑qc

P(qc|qc) Πi P(ai, qi | qi, oi, qc)

� A shared source of randomness 
affecting decisions and    
memory state update

� Random bits for the correlation 
device can be determined prior 
to execution time



Exhaustive Backups

a1 a1 a1

o2
o2 o1

a1 a1 a1

o2  
o2 o1

• Add a node for every possible action and deterministic 
transition rule
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• Repeated backups converge to optimality, but lead to 
very large controllers



Value-Preserving Transformations

• A value-preserving transformation changes the joint 

controller without sacrificing value

• Formally, there must exist mappings

fi : Qi → ∆Ri for each agent i and  fc : Qc → ∆Rc

such that

for all  s ∈ S,         , and

  

V (s,
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r |
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Bounded Policy Iteration Algorithm
Bernstein, Hansen & Zilberstein, IJCAI 2005, JAIR 2009

Theorem: For any ε, bounded policy iteration returns a joint 

controller that is ε-optimal for all initial states in a finite 

number of iterations.



Useful Transformations

• Controller reductions

– Shrink the controller without sacrificing value

• Bounded dynamic programming updates•

– Increase value while keeping the size fixed

• Both can be done using polynomial-size linear programs

• Generalize ideas from POMDP literature, particularly the 

BPI algorithm [Poupart & Boutilier 03]



Decentralized BPI Summary

• DEC-BPI finds better and much more compact solutions 

than exhaustive backups

• A larger correlation device tends to lead to higher values 

on averageon average

• Larger local controllers tend to yield higher average 

values up to a point

• But, bounded DP is limited by improving one controller at 

a time

• Linear program (one-step lookahead) results in local 

optimality and tends to “get stuck”



Nonlinear Optimization Approach
Amato, Bernstein & Zilberstein, UAI 2007, JAAMAS 2010

• Idea: Model the problem as a non-linear program (NLP)

• Consider node values (and FSC parameters) as variables

• NLP can take advantage of an initial state distribution

• Perform improvement and evaluation all in one step• Perform improvement and evaluation all in one step

• Additional constraints maintain valid values

• Notation:



The NLP Approach



Optimality

Theorem: An optimal solution of the NLP results in optimal 

stochastic controllers for the given size and initial state 

distribution.

• Advantages of the NLP approach:• Advantages of the NLP approach:

– Efficient policy representation with fixed memory

– NLP represents optimal policy for given size

– Takes advantage of known start state

– Easy to implement using off-the-shelf solvers

• Limitations:

– Difficult to solve optimally



Comparison of NLP & DEC-BPI
Amato, Bernstein & Zilberstein, UAI 2007, JAAMAS 2010

• Used freely available nonlinear constrained 

optimization solver called “filter” on the NEOS server 

(http://www-neos.mcs.anl.gov/neos/)

• Solver guarantees locally optimal solution• Solver guarantees locally optimal solution

• Used 10 random initial controllers for a range of 

controller sizes

• Compared NLP with DEC-BPI, with and without a 

small (2-node) correlation device



NLP vs. DEC-BPI for Box Pushing
Amato, Bernstein & Zilberstein, JAAMAS 2010

Values and running times (in seconds) for each controller size using NLP methods and 

DEC-BPI with and without a 2 node correlation device and BFS.  An “x” indicates that 

the approach was not able to solve the problem.



NLP Approach Summary

• The NLP defines the optimal fixed-size stochastic 

controller

• Approach shows consistent improvement over DEC-• Approach shows consistent improvement over DEC-

BPI using an off-the-shelf locally optimal solver

• A small correlation device can have significant 

benefits   

• Better performance may be obtained by exploiting 

the structure of the NLP



Multiagent Execution

• In the simplest case where the model used for 
plan/control decision-making is faithful to the 
actual environment, agents simply follow their 
decisions until done.

• More generally, models are incomplete, and so • More generally, models are incomplete, and so 
the agents can face situations that they had not 
anticipated.

• Difficult enough in single-agent case; harder in 
multiagent case, where some agents’ responses 
to unexpected situations can trigger other agents 
to encounter unexpected situations, leading to an 
unfortunate chain reaction.



Multiagent Plan Monitoring

• In the single-agent case, an agent can monitor its 
state and compare its state with what its plan 
anticipated to detect a deviation.

• In the multiagent case, it is possible that each 
agent’s local state is consistent with one of its agent’s local state is consistent with one of its 
expected trajectories, and yet the global state 
might have deviated from the joint plan.

• Hence, detecting plan deviations is a distributed 
problem solving task, where agents might need 
to share partial, tentative hypotheses about the 
global state to determine when the global state 
has veered from expectations.



Multiagent Plan Recovery

• In the single-agent case, recovering from a deviation 
involves repairing the plan to get it back on course, or 
replanning from the current state.

• In the multiagent case, both of these strategies are 
possible as well.  Unfortunately, repairing and possible as well.  Unfortunately, repairing and 
replanning locally can introduce new coordination 
flaws into the joint plan, and thus can trigger a chain 
reaction of plan coordination.

• Further, deviations due to incorrect models mean that 
revised plans are prone to deviations themselves, 
unless models are updated based on experience.  This 
raises issues in multiagent learning, and the danger of 
non-stationarity in simultaneous learning.



Continuous Multiagent Planning

• In some domains, deviations might be so prevalent 
that, if agents need to converge on fully-coordinated 
joint plans before continuing, they might never make 
meaningful progress.

• For more cognitive tasks, such as interpretation tasks • For more cognitive tasks, such as interpretation tasks 
(tracking vehicles in distributed sensor nets), it might 
be acceptable for agents to pursue plans that are not 
fully coordinated:

– The consequences of miscoordination are not catastrophic.

• The idea is that agents can make local repairs to their 
plans, potentially anticipating repairs that other agents 
will make to their plans, and pursue the repaired plans 
without waiting to converge on fully-coordinated plans.



PGP: Partial Global Planning

• Coordination over abstract actions: This makes it faster (so 
agents reestablish full coordination sooner) and more 
robust (deviations in detailed plans might cancel each other 
out such that abstract plans remain coordinated.

• Decentralized coordination: While many of the 
coordination approaches in this chapter involve some coordination approaches in this chapter involve some 
decentralized processing, most ultimately require a single 
entity to make and impose coordination 
decisions/constraints.  By not insisting on provably-
coordinated plans at any given time, PGP is fully 
decentralized.

• Multiagent reasoning: To achieve decentralization, each 
agent reasons not only about its own plans, but about 
others’ plans.  In essence, each hypothesizes how the joint 
plan will change, and will enact its own changes in 
expectation that others will do the same.



PGP: Partial Global Planning (2)

• Communication planning: By examining the evolving 
plans it ascribes to others, an agent makes more 
informed decisions about what partial results to share 
to improve collective performance.

• Asynchronous responsiveness: Each agent pursues a 
plan based on its current best guess as to the global plan based on its current best guess as to the global 
situation, permitting faster responses to emergent 
circumstances.

• Dampened responsiveness: Agents using PGP are 
endowed with a rudimentary understanding that 
coordination incurs cost and delay, and thus there 
might be some deviations from expectations that are 
sufficiently minor that correcting for them will actually 
degrade performance worse than proceeding with 
their existing plans.



Conclusions
• Multiagent planning and control has been addressed using 

various assumptions about degree of coupling in agents’ 
activities, degree of mutual awareness possible, degree to 
which local plans are hard to formulate relative to resolving 
coordination problems, and the degree to which agents’ 
environments are uncertain and non-deterministic.

• Multiagent planning/control has been a topic of research in • Multiagent planning/control has been a topic of research in 
the multiagent systems community from the community’s 
inception.

• Multiagent planning/control under classical assumptions 
has drawn on a variety of concepts including social laws, 
organizations, contracting, state-space search, and 
hierarchical plan decomposition.

• In non-classical settings, contemporary techniques in 
multiagent planning/control draw heavily on mathematical 
programming, Markov decision processes, and Bayesian 
networks.


