
MULTIAGENT PLANNING,

CONTROL, AND EXECUTIONCONTROL, AND EXECUTION

Chapter 11 of

Multiagent Systems: A Modern Approach

http://www.the-mas-book.info

E. Durfee and S. Zilberstein

Planning

• Necessary when near-term choices of actions
can enable, or prevent, later action choices
required to achieve goals.

• Possible when agent possesses a sufficiently • Possible when agent possesses a sufficiently
detailed and correct model of the
environment, and of how actions affect the
environment.

• Challenging because the space of possible
plans grows exponentially with the plan
duration.

Multiagent Planning

• Now the near-term choices of actions can enable,
or prevent, later action choices of others required
to achieve goals, and others’ near-term actions
can affect the agent’s later choices too.

• Possible when agents can explicitly or implicitly • Possible when agents can explicitly or implicitly
model others’ plans, and predict outcomes in the
environment of executing the plans jointly.

• Challenging because the space of possible
individual plans grows exponentially with the
plan duration, and of multiagent plans grows
exponentially in the number of agents.

Multiagent Planning, Control, and

Execution

• Assuming that agents are cooperative:

– Strive to maximize some joint performance
measure

• Agents’ planned activities should dovetail well
to maximize achievement of joint objectives.

• Agents’ planned activities should dovetail well
to maximize achievement of joint objectives.

• Agents’ immediate control decisions should
jointly contribute to improving collective state.

• Agents should monitor outcomes of joint
actions and progress of joint plans to execute
as a responsive multiagent team.

Problem Structure: Composition

• Each agent’s state is factored:

– State is represented as a set of features

– A feature might only be affected by particular

actionsactions

• Multiagent state is also factored:

– Different agents will perceive, and be able to

change, different (but possibly overlapping)

features of the joint environment

– Some features might be purely local to a particular

agent.

Problem Structure: Locality

• Efficient single-agent planning/control relies on
assumptions of locality:

– An action only affects a (small) subset of state features

– Most of the state features are unaffected by any
particular actionparticular action

• Efficient multiagent planning/control extends the
locality assumption:

– An action taken by one agent only affects a limited
number of other agents’ states

– As well as only a localized subset of each of their state
features

– Hence, agents are loosely- (aka weakly-) coupled

What Aspects Are Multiagent?

• Multiagent planning/control could refer to just

the product of the planning/control process:

– A centralized process builds a plan/control

representation that specifies how each of multiple representation that specifies how each of multiple

agents should behave

• Multiagent planning/control could refer to the

process of formulating plan/control decisions:

– Multiple agents participate in the construction of

a single plan or control policy

What Aspects Are Multiagent?

• Both the product and the process are

multiagent:

– Each agent applies its local expertise and

awareness to construct its local plan.awareness to construct its local plan.

– Agents use communication, and/or shared

knowledge and biases, to shape their local plans

to conform better to others’ plans, in order to

more effectively achieve collective objectives.

Flavors of Multiagent Planning/Control

• Coordination prior to local planning/control

– Committing to how to work together, and then
making suitable local planning/control decisions

• Local planning/control prior to coordination• Local planning/control prior to coordination

– Formulating local plan/control decisions
separately, then adjusting them for coordination

• Decision-Theoretic Multiagent Planning

– Multiagent planning in the face of non-
determinism and partial observability

• Dynamic multiagent planning/control

– Monitoring and replanning during execution

Coordination Prior to Local Planning

• Formulate interaction plans/rules beforehand,
and commit to following them

– Example: Message-exchange protocol defining
interpretations of and allowable responses to
(sequences) of communicative acts(sequences) of communicative acts

• Main ideas:

– Core aspects about what coordination decisions
will need to be made and how they will be
resolved are known ahead of time

– Details of agents’ plans specific to a particular
problem instance can fit into the predefined
coordination framework

Social Laws

• Basic idea: Identify joint states that should be

avoided, and impose restrictions (laws) on

agents’ action choices to prevent them.

• Canonical example: Avoid collisions.• Canonical example: Avoid collisions.

– Mobile robots moving in an open space risk

colliding with and disabling each other.

– Yet, centrally controlling all of their motions is

overkill: micromanaging largely-independent

behaviors, potential single point of failure, and

scales poorly as number of robots grows

Social Laws for Collision Prevention

• First pass: Never enter a location that is occupied.

– Does not account for simultaneous movement, when

more than one robot enters the same (previously)

unoccupied location.

• Second pass: Restrict direction from which a

location can be entered to only one choice.

– Now, collision cannot occur if world begins in a “safe”

state.

– Creates equivalent of “one-way” locations.

– Need to be careful in the creation of these to ensure

that every location can eventually be reached.

Social Laws in Grid Environment

• So long as agents start in different locations, and keep moving at
every step in the dictated direction, then eventually each can transit
between any pair of locations.

• Hence, they can independently plan the order of picking up and
dropping off items, making all deliveries without fear of collisioin.

• But distance traveled will generally be larger than the minimum
necessary.

Conventions

• Flip side of social laws to encourage, rather than
prohibit, particular outcomes

• Basic idea: Identify joint states that are preferred,
and impose restrictions (laws) on agents’ action
choices so as to achieve them.choices so as to achieve them.

• Canonical example: Shared awareness of goals.

– If an agent that is cooperating on a goal with others
comes to believe that achieving the goal is impossible,

– Then rationality would dictate that it stop taking
actions associated with achieving the goal,

– And by convention must inform the cooperating
agents so that they also avoid wasting effort.

Social Laws/Conventions Formation

1. Identify joint states that should be avoided (or
sought).

2. Work backward through agents’ joint actions to
identify possible precursor states to the states to
avoid (seek).avoid (seek).

3. Impose constraints on agents’ choices of actions
in the precursor states to prevent (or require)
reaching the states to avoid (seek).

4. Recurse: If no action choices exist in a precursor
state that avoid (attain) the target state, then
the precursor state itself becomes a state to be
avoided (sought).

Some Social Laws/Conventions

Challenges

• Identifying prior to agent execution all of the states
that should be avoided (sought).

– When state space is large/infinite, some bad (good) states
might be missed.

– New laws/conventions could need to be legislated – New laws/conventions could need to be legislated
dynamically in response to unexpected outcomes.

• Different laws could achieve the same (safety) results
but have significant impacts on performance.

– E.g., Cars drive east-west on even days, north-south on
odd

• Pushed further, then performance might get even
better if different laws apply to different agents.

– E.g., Fire trucks have authority to violate some laws

Organizational Structuring

• Basic idea: Assign complementary roles to

agents, where agents’ roles bias their choices

of actions and lead to better cooperative

behavior.behavior.

• Canonical example: Sensor networks.

– Agents in different locations are responsible for

monitoring complementary regions,

– Some agents might have particular responsibility

for fusing sensed data/interpretations of others.

Organizational Structuring

• Basic idea: Assign complementary roles to
agents, where agents’ roles bias their choices
of actions and lead to better cooperative
behavior.

• Canonical example: Sensor networks.

– Agents in different locations are responsible for
monitoring complementary regions,

– Agemts with different sensing modalities are
responsible for detecting particular phenomena,

– Some agents might have particular responsibility
for fusing sensed data/interpretations of others.

Organizational Design

• Encode in computational form the
roles/protocols exhibited by humans.

• Detect patterns of recurrent interactions among
agents working from first principles, and compile
these into roles and protocols.these into roles and protocols.

• Decompose the task from the top down, and
base roles on subtasks and interactions on
subtask relationships.

• Define a space of organizational designs, and
search over that space, using expectations about
the task-environment to evaluate alternative
(partial) organizational designs.

ORGANIZATIONSEARCH

Initialize space of candidate partial organizations with a
single candidate with the overall goal as its single
(leaf) node.

1. Generate expansions of a candidate partial
organization by finding an unbound goal leaf in its
decomposition hierarchy, and replacing it either with decomposition hierarchy, and replacing it either with
a role-goal binding (e.g., assigning it to an agent
capability), or with a subgoal tree that decomposes it
further.

2. Repeat step 1 until all leaves have associated roles.

3. Use information about available agents’ capabilities to
assign agents to the roles.

4. If all roles assigned, return organization; else,
backtrack to try different decompositions.

Organization Execution

• A purpose of adopting an organization is to
simplify the operational control decisions of
the agents:

– The organizational biases should lead agents
towards compatible activities, so an agent towards compatible activities, so an agent
following its role specifications should not need to
model what others are doing.

• This can lead to good, but suboptimal,
performance:

– Organizational inefficiencies can arise from lack of
detailed awareness of concurrent activities across
the organization.

Functionally-Accurate Cooperation

• A characterization of organizational
performance:

– Agents’ decisions lead to accurate functioning of
the collective, in the limit, even though at any
given time the system might not be completely given time the system might not be completely
accurate.

– Agents’ actions cooperatively lead to proper
functional performance, even though no single
agent can achieve that performance alone.

• FAC posits that, given enough time and
information exchange, agents will eventually
converge on good global solutions.

FAC Applications

• FAC is appropriate for cognitive tasks where

multiple, tentative, partial solutions can be

considered at once:

– Interpretation of sensor network data.– Interpretation of sensor network data.

– Design of an artifact, plan, process, etc.

• FAC agents typically utilize architectures that

expedite the efficient storage and retrieval of

tentative partial solutions:

– E.g., Blackboard architectures.

FAC Agent Interactions

• Exchange of tentative partial solutions increases:
– Completeness of solutions (combination).

– Confidence in solutions (corroboration).

– Precision of solutions (refinement).

• Uncontrolled, exchange can engender distraction • Uncontrolled, exchange can engender distraction
and duplication of effort.

• For this reason, FAC often combined with
organizational structuring:
– Agents’ roles and responsibilities bias their decisions

about what to exchange, what to work on locally, etc.

– Communication protocols guide timing decisions
about how locally-complete a hypothesis should be
before it is shared with other agents

Agent Interaction Variations

• Rather than voluntarily exchanging information
unprompted, protocol could be request-driven:
– Agent identifies characteristics of information that would

be helpful to have, and queries others for it.

– Whom to ask can be guided by organizational knowledge.

– Asking can in fact influence behavior of asked agents to – Asking can in fact influence behavior of asked agents to
prioritize finding an answer.

– Can be more efficient, but introduces more delay in
information exchange (2 rounds of message passing
instead of 1).

• Reducing rounds of iterative communication can also
be accomplished by conveying multiple tentative
hypotheses in the same round:
– E.g., several available times for scheduling a meeting.

• Repetition (“murmuring”) for undependable channels.

Result-Sharing vs. Task-Sharing

• FAC with Organizational Structuring assumes that
agents’ different roles inherently distribute tasks
among them, so joint problem solving involves
sharing partial, tentative results.

• A common alternative of moving results to agents • A common alternative of moving results to agents
whose tasks (roles) need them, is to instead move
tasks to agents that can do them.

• That is, cooperative problem solving involves
identifying how and where agents should share
tasks such that tasks are assigned to agents that
are best able to do them.

Task-Sharing Protocols

• A protocol in this context represents a template for a
pre-defined plan:
– To achieve the goal of assigning tasks/roles to agents most

able to do them;

– The protocol provides a communication plan template for
the agents to follow;the agents to follow;

– Where the specific tasks/roles to be done, and how agents
can express their suitability for doing them, can vary.

• Formulating protocols is similar to social laws and
organizational structures:
– Identify desirable states of the world (e.g., tasks/roles

distributed well);

– Identify patterns of actions that if jointly followed will
bring those states about.

Contract-Net Protocol Example

• The first well-studied multiagent protocol.

• Investigated in the context of distributed

sensor net establishment (DSNE):

– Given high-level goal of monitoring a region;– Given high-level goal of monitoring a region;

– Decompose overall monitoring objective into a set

of smaller roles (e.g., regions to monitor, fusion of

results from different regions).

– Discover agents whose positions and/or resources

permit them to perform the roles, and assign the

roles accordingly.

Contract-Net Protocol Process

1. An agent whose role/task exceeds its abilities decomposes
the role/task into pieces that, if all performed, achieve the
desired performance.

2. For each subrole/task, this Manager agent initiates the
contracting protocol:

1. It formulates a task-announcement message describing the 1. It formulates a task-announcement message describing the
task, the capabilities required of agents eligible to accept the
task, and the contents of a bid for the task.

2. It broadcasts the message, or if it has knowledge about which
agents are likely candidates it can address the announcement
just to them.

In the DSNE domain, an announcement message could
indicate the regional coverage needed by whomever takes

on the role, and the bid specification might request a
summary of the sensory capabilities/limits of the

potential recipient of the role/task.

Contract-Net Protocol Process (2)

3. A potential Contractor agent receiving an announcement
message:

1. Confirms that it satisfies the eligibility requirements;

2. Uses the task/role description to determine the degree to which is it
willing and able to perform the role/task;

3. Generates and submits a bid in the specified format.

4. The Manager agent :4. The Manager agent :
1. Collects the bids sent by the contractors.

2. If no (acceptable) bids are received, it sends out a revised
announcement (relaxing eligibility requirements, or modifying the
expectations of the role/task.

3. If acceptable bids are received, it accepts one (or more, if
redundancy is needed for robustness) and awards the task/role.

In the DSNE domain, the Manager might need to carve up the region
differently to better match the spatial arrangement of existing
sensors. If the right placements of sensors are available, it will

decide which sensor in each subregion is “best” (is most reliable,
powerful, available…) and assign the roles accordingly.

Contract-Net Protocol Process (3)

5. A winning Contractor adopts the assigned role/task, which could
require that it withdraw bids sent to other managers.

6. It performs its role/task:
1. It could further decompose its task, recursively invoking the

Contract-Net protocol

2. It could send interim reports back to the Manager reporting on its
progress/results so far.progress/results so far.

7. When the task/role is completed, it sends final information to the
Manager.

8. Upon receiving reports, the Manager:
1. Combines reports from the different Contractors to synthesize a full

view of the (tentative) global solution.

2. Cancels or redirects Contractors if collective performance is not on a
satisfactory trajectory.

In the DSNE domain, Contractors will monitor their assigned regions,
sharing partial maps of the phenomena detected in their regions
with the Manager, which will compose these results into a global

view of the phenomena.

Tradeoffs About When to Coordinate

• Coordination first, like in social laws and
organizational structuring, decouples agents’
local problems so that they can plan (and replan)
independently.

• But, as has been seen, imposing the coordination • But, as has been seen, imposing the coordination
constraints might be overkill for any particular
problem instance:
– Laws unnecessarily restrictive

– Organizational inefficiencies.

• Alternative is to wait until agents know what they
want to do, and then coordinate their particular
plans rather than coordinating for all possible
plans.

Local Planning Prior to Coordination

• Appeals to locality and decomposability

arguments

– That the collective endeavor is composed of largely

independent activities done by individuals.

– And that interdependencies are local to small

numbers of individuals.

• This argues for a divide-and-conquer approach:

– Each individual plans as if it were completely

independent.

– Then any interdependencies are identified and

resolved.

Multiagent Plan Coordination Problem

(MPCP)

• Finds a multiagent plan that is a combination of

agents’ local plans, adjusted to account for

interdependencies.

• Resulting plan could differ from a multiagent plan • Resulting plan could differ from a multiagent plan

that considers the full space of joint actions.

• Has a distributed constraint satisfaction flavor:

– Assignments of variables (plans or pieces of plans)

that satisfy local and interagent constraints.

– But domain of variables (plan spaces) are too large to

enumerate, and constraints can be expensive to

check.

Basic MPCP Approach

1. Each agent builds its own plan as if it were
alone.

2. Agents directly, or through a more centralized
intermediary, identify potential
conflicts/inefficiencies that could arise during conflicts/inefficiencies that could arise during
joint execution.

3. To resolve such problems, agents inject
additional constraints (for example, semaphores
to prevent bad combinations of actions).

4. If all problems prevented, then done. Else, one
or more agents formulates an alternative local
plan and the process repeats.

State-Space MPCP Approach

• Detects problems in joint execution by projecting
forward through plan execution, in a graph-
planning manner.
1. From current state, consider combination of actions

consisting of the next action of each agents’ plan.consisting of the next action of each agents’ plan.

2. Using mutex concepts, identify impermissible
combinations of actions.

3. Impose timing constraints that prevent mutex
actions, postponing some of them, to create a legal
next “current” state, and repeat the process.

• The process above can search over different
choices of which actions to postpone to
ultimately find a joint execution sequence that
achieves the agents’ combined goals.

Plan Combination Search
Ephrati & Rosenschein, AAAI 1994

• Variation on state-space MPCP techniques.

• Each agent starts with a space of plans that can
achieve its goals.

• Mutex can rule out particular combinations of
agents’ plans, but least-commitment of

• Mutex can rule out particular combinations of
agents’ plans, but least-commitment of
maintaining a space of plans supports finding
better (nearly optimal) joint plans.

• A* search technique to explore alternative paths
through action combinations, where heuristic
includes estimated further costs from a particular
joint state to a goal-satisfying state.

Plan-Space MPCP Approach

• Instead of using agents’ individual plans to

search through the spaces of joint states that

they might induce;

• Search through a space of joint plans of the • Search through a space of joint plans of the

agents.

• Builds on single-agent planning techniques,

and in particular partial-order causal-link

(POCL) planning.

Single-Agent POCL Plan

• A partial-order causal-link plan is defined as:

Single-Agent POCL Planning

1. Initialize the plan with the init and goal steps.

2. While there is a flaw (a causal-link conflict or

an open precondition):

1. Select a flaw to eliminate.1. Select a flaw to eliminate.

2. Eliminate that flaw:

• Add ordering constraints to resolve conflict.

• Add causal link (and a new step creating it if needed)

to resolve open precondition.

3. When no flaws remain, return plan.

Example Single-Agent POCL Planning

Problem

Blocks world with blocks A, B, C, and D

Goal: Block A should be on block B.

Initial state:

Example Single-Agent POCL Planning

Solution

• 3 new steps introduced.

• Moving C from A to Table, and D from B to

Table, are unordered wrt each other, but

both must precede moving A from Table to B.

Different Single-Agent POCL Plan
• Same initial state, but goal is that block B should be

on block C.

• Requires adding 2 new steps, and creates a totally-
ordered plan.

Parallel POCL Plan
• Whether single-agent or multiagent, need to account for

possibility that more than one action can happen at a
time.

• Plan specification needs to express whether steps must be
taken simultaenously, or must not be taken
simultaneously.

• This introduces another type of possible flaw,
corresponding to mutually-exclusive steps due to
inconsistent effects:

Multiagent POCL Plan

A parallel POCL plan that expresses the assignments

of which agents are responsible for which steps:

Uncoordinated Multiagent POCL Plan
Combines the 2 single-agent plans.

Requires that both initial states, and both goal states, be
concurrent.

Multiagent Plan Coordination Problem

Rearrange ordering constraints and causal links so

as to resolve all flaws;

Without adding any new steps.

Example: Move(A,T,B) Example: Move(A,T,B)

threatens Cl(B)

causal link

between

Move(D,B,T) and

Move(B,T,C).

Multiagent Plan Coordination Process

The combined agents’ plans represent a (flawed) plan:

Utilize the standar POCL planning algorithm of finding and
repairing flaws.

Example: Adding a
temporal
ordering ordering
constraint
resolves threat.

Redundancy Flaw
Even with causal-link threat resolved, resulting multiagent plan

arguably still is flawed:
– Redundant “Move(D,B,T)” actions could lead to misbehavior

(collision at block; an agent doing the move, and then the other
putting D back on B so that it can do the move too…)

Plan Step Redundancy

Explicitly represent and resolve this type of flaw.

Redundancy flaws can be repaired by searching for a
way to redirect the causal links coming from one
step so that all instead come from other existing
steps.

Fully Coordinated Multiagent POCL

Plan
All flaws have been resolved:

Multiagent Plan Coordination by Plan

Modification Algorithm

Hierarchical Planning

• A plan-space planning approach:

– Incrementally creates a plan by refining more
abstract plan steps, expanding them into more
detailed subplans.

– Exploits knowledge captured in the form of a – Exploits knowledge captured in the form of a
library of subplans: rather than constructing a plan
directly as a search through primitive executable
actions, retrieve and combine subplans that have
been prebuilt to achieve typical (sub)goals.

– The planning process is complete when the plan is
refined down to the level of executable actions.

Multiagent Hierarchical Planning

• Extends the notion of an abstract plan step:

– Not only abstracting over time, but also over
performer of actions.

– Team-oriented programming mindset: Abstract
actions can correspond to a group activity, where actions can correspond to a group activity, where
refinements of those actions break down the
different roles/tasks of agents.

– In this sense, very much like organizational
structuring:

• Differs in the Organizational Structure is assumed to
persist over multiple problem instances, where
multiagent hierarchical planning would formulate a plan
for a particular problem instance.

Hierarchical Coordination

• Basic ideas:
– Modifications to agents’ individual plans to achieve

coordination don’t have to be done at the most
primitive level.

– Plans at abstract levels are smaller and simpler, making
coordination easier.coordination easier.

• Strategy:
– Work downward from abstract plans to discover and

resolve flaws.

– Decide whether to resolve a flaw at an abstract level
(potentially introducing more constraints than needed)
or to expend the effort to look for how the flaw
manifests at a more detailed level, to restrict
coordination constraints more narrowly where needed.

Hierarchical Behavior-Space Search

1. Initialize the current-abstraction-level to the most abstract level.

2. Agents exchange descriptions of the plans and goals of interest at the
current level.

3. Remove plans with no potential conflicts. If the set is empty then done;
else decide whether to resolve conflicts at the current level or at a
deeper level.

4. If conflicts are to be resolved at a deeper level, set the current-4. If conflicts are to be resolved at a deeper level, set the current-
abstraction-level to the next deeper level and set the plans/goals of
interest to the refinements of the plans with potential conflicts. Go to
step 2.

5. If conflicts are to be resolved at this level:
a) Agents form a total order. Top agent is the current superior.

b) Current superior sends down its plan to the others.

c) Other agents change their plans to work properly with plan of current
superior, without introducing new conflicts with past superiors.

d) Once no further changes needed in plans of the inferior agents, the current
superior becomes a previous superior and the next agent in the total order
becomes the superior. Loop back to step b. If there is no next agent, then
the protocol terminates and agents have coordinated their plans.

Decision-Theoretic MA Planning

• A group of agents interact in a stochastic environment

• Each “episode” involves a sequence of decisions over

some finite or infinite horizon

• The change in the environment is determined • The change in the environment is determined

stochastically by the current state and the set of actions

taken by the agents

• Each decision maker obtains different partial

observations of the overall situation

• Decision makers have the same objectives characterized

by a single reward function

Applications

• Autonomous rovers for space

exploration

• Protocol design for multi-access

broadcast channelsbroadcast channels

• Coordination of mobile robots

• Decentralized detection and

target tracking

• Decentralized detection of

hazardous weather events

Markov Decision Process (MDP)

• Expressive model for stochastic planning

a

s, r
WorldWorld

• Expressive model for stochastic planning

• Originated in operations research in the 1950s

• Adopted by the AI community as a framework for

planning and learning under uncertainty

• Can be solved efficiently by DP algorithms and a range

of search and abstraction methods

• Everything is an MDP – just keep adding states!

Partially Observable MDP

• Generalization formulated in the 1960s []

a

o r RewardRewardWorldWorld

• Generalization formulated in the 1960s [Astrom 65]

• The agent receives noisy observations of the underlying

world state

• Need to remember previous observations in order to

act optimally

• More difficult, but there are DP algorithms

[Smallwood & Sondik 73]

Decentralized POMDP

a1

o1

a2

1

r RewardRewardWorldWorld

• Generalization of POMDP involving multiple cooperating

decision makers, each receiving a different partial

observation after a joint action is taken

o2

a2

2

r

DEC-POMDPs

Subclasses and Related Models

• Decentralized MDP (DEC-MDP): DEC-POMDP in which the

combined observations of all the agents provide perfect

information about the underlying world state

• Multiagent MDP (MMDP): DEC-MDP in which each agent has

perfect information about the underlying stateperfect information about the underlying state

• Partially-Observable Stochastic Game (POSG): Generalization

of DEC-POMDP in which each agent can have a different

objective function.

• Interactive POMDP (I-POMDP): A model in which each agent

explicitly represents beliefs about the other agents and about

the world state.

Relationship Between Models

POSG

Relationships among the various decision-theoretic models

DEC-POMDP
DEC-POMDP-COM

MTDP

POSG

I-POMDP
(finitely nested)

POMDP MDP DEC-MDP

Example: Mobile Robot Planning

States: grid cell pairs

Actions: ↑,↓,←,→Actions: ↑,↓,←,→

Transitions: noisy

Goal: meet quickly

Observations: red lines

Example: Cooperative Box-Pushing

Goal: push as many boxes as possible to goal area;

larger box has higher reward, but requires two agents

to be moved.

Example: Multiagent Tiger Problem

• A simple toy problem used for illustration with 2 agents, 2

states, 3 actions and 2 observations [Nair et al. 03]

• Two agents are situated in a room with two doors. Behind one

door is a tiger and behind the other is a large treasure.

• Each agent may open one of the doors or listen. If either • Each agent may open one of the doors or listen. If either

agent opens the door with the tiger behind it, a large penalty

is given. If the door with the treasure behind it is opened and

the tiger door is not, a reward is given. If both agents choose

the same action a larger positive reward or a smaller penalty

is given to reward cooperation.

• Listening incurs a small cost and provide a noisy observation

of which door the tiger is behind.

Solution Representation

• Each agent’s behavior is described by a local policy δi

• Policy can be represented as a mapping from

– Local observation sequences to actions; or–

– Local memory states to actions

• Actions can be selected deterministically or

stochastically

• Goal is to maximize expected reward over a finite

horizon or discounted infinite horizon

Solutions as Policy Trees
! " #$%" &'('

L

L L

hl hr
L

L L

hl hr

L

hl hr

• Each node is labeled with an action and each edge with an

observation that could be received

• Policy tree shown above is optimal for the multiagent tiger

problem with horizon 5. (Same tree assigned to both agents)

L L

L L

hl hr

L L

hl hr

OR

hl hr

L

hl hr

L

hr hl

OL

hr hl

L

L L

L L

hl hr

L L

hl hr

OR L

hl hr hl hr hr hl

OL

hr hl

LLOR OR OR OL OL OL

Solutions as Finite-State Controllers

Agent 1 Agent 2

L L
hl

OR
hl

hr, hl

hr

L L
hr

OL
hr

hr, hl

hl

• Each controller state is labeled with an action and edges

between states are labeled with observations.

• Shown above are optimal three-node deterministic controllers

for the multiagent tiger problem.

• Green arrow designate the initial state of the controller.

hr hl

Solutions as Finite-State Controllers

hr hr hr hl hl hl

Agent 1

L

hr

L L

hr, hl

hr

OR

Agent 2

L

hl

L L

hr, hl

hl

OL

hl hr

• Optimal four-node deterministic controllers for the multiagent

tiger problem.

• The policies assigned to the agents are different.

Stochastic Controllers

OR

L
hl

0.125

0.875

1.0

hr, hl

1.0

hr
1.0

Agent 1

OL

L
hr

0.125

0.875

1.0

hr, hl

1.0

hl 1.0

Agent 2

• Stochastic two-node controllers for multiagent tiger.

• In each controller state, actions are selected stochastically;

when an observation is obtained, the transition to a new state

is also stochastic.

L

hr
hl

0.125
1.0

1.0

1.0

0.875

L

hl
hr

0.125
1.0

1.0

1.0

0.875

Evaluating Solutions

• For a finite-horizon problem with initial state s0 and T

time steps, the value of a joint policy δ is

• For an infinite-horizon problem, with initial state s0 and

discount factor γ in [0;1), the value of a joint policy δ is

Previous Complexity Results

MDP P-complete
(if T < |S|)

Papadimitriou &

Tsitsiklis 87

POMDP PSPACE- complete Papadimitriou &

Finite Horizon

POMDP PSPACE- complete
(if T < |S|)

Papadimitriou &

Tsitsiklis 87

MDP P-complete Papadimitriou &

Tsitsiklis 87

POMDP Undecidable Madani et al. 99

Infinite-Horizon Discounted

How Hard are DEC-POMDPs?
Bernstein, Givan, Immerman & Zilberstein, UAI 2000, MOR 2002

• A static version of the problem, where a single set of

decisions is made in response to a set of observations,

was shown to be NP-hard [Tsitsiklis and Athan, 1985]

• Bernstein et al. proved that two-agent finite-horizon • Bernstein et al. proved that two-agent finite-horizon

DEC-POMDPs are NEXP-hard via a reduction to TILING

• But these are worst-case results!

Are real-world problems easier?

What Features of the Domain Affect

the Complexity and How?

• Factored state spaces (structured domains)

• Independent transitions (IT)

• Independent observations (IO)• Independent observations (IO)

• Structured reward function (SR)

• Goal-oriented objectives (GO)

• Degree of observability (partial, full, jointly full)

• Degree and structure of interaction

• Degree of information sharing and communication

NP-C NEXP-C

NEXP-C

Complexity of Sub-Classes
Goldman & Zilberstein, JAIR 2004

Finite-Horizon

DEC-MDP

NP-C

P-CP-C

NP-C

NP-C NEXP-C

IO & IT Goal Oriented

Goal Oriented

|G| = 1 |G| > 1
Certain Conditions

w/ Sharing
Information

Solving Finite-Horizon DEC-POMDPs

JESP: First DP Algorithm
Nair, Tambe, Yokoo, Pynadath & Marsella, IJCAI 2003

• JESP: Joint

Equilibrium-

based Search for based Search for

Policies

• Complexity:

exponential

• Result: only

locally optimal

solutions

Is Exact DP Possible?

• The key to solving POMDPs is that they can be viewed as

belief-state MDPs [Smallwood & Sondik 73]

• Not as clear how to define a belief-state MDP for a •
DEC-POMDP

• The first exact DP algorithm for finite-horizon DEC-

POMDPs used the notion of a generalized belief state

• The algorithm also applies to competitive situations

modeled as POSGs

Generalized Belief State

A generalized belief state captures the uncertainty of

one agent with respect to the state of the world as well

as the policies of other agents.

Strategy Elimination

• Any finite-horizon DEC-POMDP can be converted to a

normal form game

• But the number of strategies is doubly exponential

in the horizon length!in the horizon length!

R11
1, R11

2 … R1n
1, R1n

2

… … …

Rm1
1, Rm1

2 … Rmn
1,

Rmn
2

…

…

A Better Way to Do Elimination
Hansen, Bernstein & Zilberstein, AAAI 2004

• We can use dynamic programming to eliminate

dominated strategies without first converting to

normal form

• Pruning a subtree eliminates the set of trees • Pruning a subtree eliminates the set of trees

containing it

a1

a1 a2

a2 a2 a3 a3

o1

o1 o2 o1 o2

o

2

a3

a2 a1

o1 o2

a2

a2 a3

a3 a2 a2 a1

o1

o1 o2 o1 o2

o

2

prune

eliminate

Generalizing Dynamic Programming

• Build policy trees as in single agent case

• Pruning rule is a natural generalization

What to prune Space for pruning

Normal form game strategy
∆(strategies of
other agents)

POMDP policy tree ∆(states)

POSG

DEC-POMDP
policy tree

∆(states × policy trees
of other agents)

What to prune Space for pruning

Exact DP for DEC-POMDPs
Hansen, Bernstein & Zilberstein, AAAI 2004

� Algorithm is

complete & optimal

� Complexity is double

• Theorem: DP performs iterated elimination of dominated

strategies in the normal form of the POSG.

• Corollary: DP can be used to find an optimal joint policy in a

DEC-POMDP.

� Complexity is double

exponential

Memory-Bounded DP (MBDP)
Seuken & Zilberstein, IJCAI 2007

• Combining two approaches:

– The DP algorithm that operates bottom-up

– Heuristic search that operates top-down

• The DP step can only eliminate a policy tree if it is • The DP step can only eliminate a policy tree if it is

dominated for every belief state

• But, only a small subset of the belief space is actually

reachable

• Furthermore, the combined approach allows the

algorithm to focus on a small subset of joint policies that

appear best

Memory-Bounded DP Cont.

The MBDP Algorithm

Generating “Good” Belief States

• MDP Heuristic -- Obtained by solving the corresponding

fully-observable multiagent MDP

• Infinite-Horizon Heuristic -- Obtained by solving the

corresponding infinite-horizon DEC-POMDPcorresponding infinite-horizon DEC-POMDP

• Random Policy Heuristic -- Could augment another

heuristic by adding random exploration

• Heuristic Portfolio -- Maintain a set of belief states

generated by a set of different heuristics

• Recursive MBDP

Performance of MBDP

MBDP Parameter Tuning

The best parameter settings and solution values for the

tiger problem with horizon 20 for given time limits.

MBDP Successors

• Improved MBDP (IMBDP)
[Seuken and Zilberstein, UAI 2007]

• MBDP with Observation Compression (MBDP-OC)
[Carlin and Zilberstein, AAMAS 2008]

• Point Based Incremental Pruning (PBIP)• Point Based Incremental Pruning (PBIP)
[Dibangoye, Mouaddib, and Chaib-draa, AAMAS 2009]

• PBIP with Incremental Policy Generation (PBIP-IPG)
[Amato, Dibagoye, Zilberstein, AAAI 2009]

• Constraint-Based Dynamic Programming (CBDP)
[Kumar and Zilberstein, AAMAS 2009]

• Point-Based Backup for Decentralized POMDPs
[Kumar and Zilberstein, AAMAS 2010]

• Point-Based Policy Generation (PBPG)
[Wu, Zilberstein, and Chen, AAMAS 2010]

Why Does MBDP Work?

• Perform search in a reduced

policy space

• Exact algorithm performs only

lossless pruning lossless pruning

• Approximate algorithms rely on

more aggressive pruning

• MBDP represents an exponential

size policy with linear space

O(maxTrees × T)

• Resulting policy is an acyclic

finite-state controller.

Solving Infinite-Horizon DEC-POMDPs

• Unclear how to define a compact belief-state without

fixing the policies of other agents

• Value iteration does not generalize to the infinite-

horizon casehorizon case

• Can generalize policy iteration for POMDPs

[Hansen 98, Poupart & Boutilier 04]

• Basic idea: Representing local policies using

(deterministic/stochastic) finite-state controllers and

defining a set of controller transformations that

guarantee improvement & convergence

Policies as Controllers

• Finite state controller represents each policy

– Fixed memory

– Randomness used to offset memory limitations

– Action selection, i : Qi → ∆Ai– Action selection, i : Qi → ∆Ai

– Transitions, i : Qi × Ai × Oi → ∆Qi

• Value of two-agent joint controller given by the Bellman

equation:

V (q
1
,q

2
,s) = P(a

1
| q

1
)P(a

2
| q

2
)

a1 ,a2

∑ R(s,a
1
,a

2
) +[

γ P(s' | s,a
1
,a

2
) O(o

1
,o

2
| s',a

1
,a

2
) P(q

1
' | q

1
,a

1
,o

1
)P(q

2
' | q

2
,a

2
,o

2
)

q1 ',q2 '

∑
o1 ,o2

∑ V (q
1
',q

2
',s')

s'

∑






Controller Example

a1

• Stochastic controller for one agent

– 2 nodes, 2 actions, 2 observations

– Parameters

• P(a | q)

o1

o

a1

a1

a2

o1

• P(ai | qi)

• P(qi | qi, oi)

1 2

o2
0.5

0.5

0.75
0.25

1.0

o2

1.0

1.0

o2

1.0

1.0

'

Finding Optimal Controllers

• How can we search the space of possible joint

controllers?

• How do we set the parameters of the controllers to

maximize value?maximize value?

• Deterministic controllers – can use traditional search

methods such as BSF or B&B

• Stochastic controllers – continuous optimization problem

• Key question: how to best use a limited amount of

memory to optimize value?

Independent Joint Controllers

• Local controller for agent i

is defined by conditional

distribution P(ai, qi | qi, oi)

• Independent joint

'

• Independent joint

controller is expressed by:

Πi P(ai, qi | qi, oi)

• Can be represented as a

dynamic Bayes net

'

Correlated Joint Controllers
Bernstein, Hansen & Zilberstein, IJCAI 2005, JAIR 2009

� A correlation device, [Qc,ψ], is a set of nodes and a
stochastic state transition function

'''

� Joint controller:

∑q P(qc|qc) Πi P(ai, qi | qi, oi, qc)
'''∑qc

P(qc|qc) Πi P(ai, qi | qi, oi, qc)

� A shared source of randomness
affecting decisions and
memory state update

� Random bits for the correlation
device can be determined prior
to execution time

Exhaustive Backups

a1 a1 a1

o2
o2 o1

a1 a1 a1

o2
o2 o1

• Add a node for every possible action and deterministic
transition rule

a1 a2

o1,o2

o1,o2

a1 a2

o1,o2

o1,o2

a1

a2

a2

a2
a2

o2

o1

o1

o2

o1,o2

o1

o1,o2

o2
o1

o1,o2 o1,o2
a1

a2

a2

a2
a2

o2

o1

o1

o2

o1,o2

o1

o1,o2

o2
o1

o1,o2 o1,o2

• Repeated backups converge to optimality, but lead to
very large controllers

Value-Preserving Transformations

• A value-preserving transformation changes the joint

controller without sacrificing value

• Formally, there must exist mappings

fi : Qi → ∆Ri for each agent i and fc : Qc → ∆Rc

such that

for all s ∈ S, , and

V (s,
r
q ,qc) ≤ P(

r
r |

r
q) P(rc | qc)V (s,

r
r ,rc)

rc

∑
r
r

∑

r
q ∈

r
Q qc ∈ Qc

Bounded Policy Iteration Algorithm
Bernstein, Hansen & Zilberstein, IJCAI 2005, JAIR 2009

Theorem: For any ε, bounded policy iteration returns a joint

controller that is ε-optimal for all initial states in a finite

number of iterations.

Useful Transformations

• Controller reductions

– Shrink the controller without sacrificing value

• Bounded dynamic programming updates•

– Increase value while keeping the size fixed

• Both can be done using polynomial-size linear programs

• Generalize ideas from POMDP literature, particularly the

BPI algorithm [Poupart & Boutilier 03]

Decentralized BPI Summary

• DEC-BPI finds better and much more compact solutions

than exhaustive backups

• A larger correlation device tends to lead to higher values

on averageon average

• Larger local controllers tend to yield higher average

values up to a point

• But, bounded DP is limited by improving one controller at

a time

• Linear program (one-step lookahead) results in local

optimality and tends to “get stuck”

Nonlinear Optimization Approach
Amato, Bernstein & Zilberstein, UAI 2007, JAAMAS 2010

• Idea: Model the problem as a non-linear program (NLP)

• Consider node values (and FSC parameters) as variables

• NLP can take advantage of an initial state distribution

• Perform improvement and evaluation all in one step• Perform improvement and evaluation all in one step

• Additional constraints maintain valid values

• Notation:

The NLP Approach

Optimality

Theorem: An optimal solution of the NLP results in optimal

stochastic controllers for the given size and initial state

distribution.

• Advantages of the NLP approach:• Advantages of the NLP approach:

– Efficient policy representation with fixed memory

– NLP represents optimal policy for given size

– Takes advantage of known start state

– Easy to implement using off-the-shelf solvers

• Limitations:

– Difficult to solve optimally

Comparison of NLP & DEC-BPI
Amato, Bernstein & Zilberstein, UAI 2007, JAAMAS 2010

• Used freely available nonlinear constrained

optimization solver called “filter” on the NEOS server

(http://www-neos.mcs.anl.gov/neos/)

• Solver guarantees locally optimal solution• Solver guarantees locally optimal solution

• Used 10 random initial controllers for a range of

controller sizes

• Compared NLP with DEC-BPI, with and without a

small (2-node) correlation device

NLP vs. DEC-BPI for Box Pushing
Amato, Bernstein & Zilberstein, JAAMAS 2010

Values and running times (in seconds) for each controller size using NLP methods and

DEC-BPI with and without a 2 node correlation device and BFS. An “x” indicates that

the approach was not able to solve the problem.

NLP Approach Summary

• The NLP defines the optimal fixed-size stochastic

controller

• Approach shows consistent improvement over DEC-• Approach shows consistent improvement over DEC-

BPI using an off-the-shelf locally optimal solver

• A small correlation device can have significant

benefits

• Better performance may be obtained by exploiting

the structure of the NLP

Multiagent Execution

• In the simplest case where the model used for
plan/control decision-making is faithful to the
actual environment, agents simply follow their
decisions until done.

• More generally, models are incomplete, and so • More generally, models are incomplete, and so
the agents can face situations that they had not
anticipated.

• Difficult enough in single-agent case; harder in
multiagent case, where some agents’ responses
to unexpected situations can trigger other agents
to encounter unexpected situations, leading to an
unfortunate chain reaction.

Multiagent Plan Monitoring

• In the single-agent case, an agent can monitor its
state and compare its state with what its plan
anticipated to detect a deviation.

• In the multiagent case, it is possible that each
agent’s local state is consistent with one of its agent’s local state is consistent with one of its
expected trajectories, and yet the global state
might have deviated from the joint plan.

• Hence, detecting plan deviations is a distributed
problem solving task, where agents might need
to share partial, tentative hypotheses about the
global state to determine when the global state
has veered from expectations.

Multiagent Plan Recovery

• In the single-agent case, recovering from a deviation
involves repairing the plan to get it back on course, or
replanning from the current state.

• In the multiagent case, both of these strategies are
possible as well. Unfortunately, repairing and possible as well. Unfortunately, repairing and
replanning locally can introduce new coordination
flaws into the joint plan, and thus can trigger a chain
reaction of plan coordination.

• Further, deviations due to incorrect models mean that
revised plans are prone to deviations themselves,
unless models are updated based on experience. This
raises issues in multiagent learning, and the danger of
non-stationarity in simultaneous learning.

Continuous Multiagent Planning

• In some domains, deviations might be so prevalent
that, if agents need to converge on fully-coordinated
joint plans before continuing, they might never make
meaningful progress.

• For more cognitive tasks, such as interpretation tasks • For more cognitive tasks, such as interpretation tasks
(tracking vehicles in distributed sensor nets), it might
be acceptable for agents to pursue plans that are not
fully coordinated:

– The consequences of miscoordination are not catastrophic.

• The idea is that agents can make local repairs to their
plans, potentially anticipating repairs that other agents
will make to their plans, and pursue the repaired plans
without waiting to converge on fully-coordinated plans.

PGP: Partial Global Planning

• Coordination over abstract actions: This makes it faster (so
agents reestablish full coordination sooner) and more
robust (deviations in detailed plans might cancel each other
out such that abstract plans remain coordinated.

• Decentralized coordination: While many of the
coordination approaches in this chapter involve some coordination approaches in this chapter involve some
decentralized processing, most ultimately require a single
entity to make and impose coordination
decisions/constraints. By not insisting on provably-
coordinated plans at any given time, PGP is fully
decentralized.

• Multiagent reasoning: To achieve decentralization, each
agent reasons not only about its own plans, but about
others’ plans. In essence, each hypothesizes how the joint
plan will change, and will enact its own changes in
expectation that others will do the same.

PGP: Partial Global Planning (2)

• Communication planning: By examining the evolving
plans it ascribes to others, an agent makes more
informed decisions about what partial results to share
to improve collective performance.

• Asynchronous responsiveness: Each agent pursues a
plan based on its current best guess as to the global plan based on its current best guess as to the global
situation, permitting faster responses to emergent
circumstances.

• Dampened responsiveness: Agents using PGP are
endowed with a rudimentary understanding that
coordination incurs cost and delay, and thus there
might be some deviations from expectations that are
sufficiently minor that correcting for them will actually
degrade performance worse than proceeding with
their existing plans.

Conclusions
• Multiagent planning and control has been addressed using

various assumptions about degree of coupling in agents’
activities, degree of mutual awareness possible, degree to
which local plans are hard to formulate relative to resolving
coordination problems, and the degree to which agents’
environments are uncertain and non-deterministic.

• Multiagent planning/control has been a topic of research in • Multiagent planning/control has been a topic of research in
the multiagent systems community from the community’s
inception.

• Multiagent planning/control under classical assumptions
has drawn on a variety of concepts including social laws,
organizations, contracting, state-space search, and
hierarchical plan decomposition.

• In non-classical settings, contemporary techniques in
multiagent planning/control draw heavily on mathematical
programming, Markov decision processes, and Bayesian
networks.

