Multiagent Learning



Overview

Introduction
Challenges
Multiagent Reinforcement Learning

Other Paradigms

— Evolutionary Game Theory
— Swarm Intelligence

— Neuro-Evolutionary Control

Case study
Conclusions



Introduction

MultiAgent Systems (2nd edition), MIT Press, 2013, edited by G. Weiss



Introduction

* Impossible to foresee all situations beforehand

—_— Behaviour x

R —_ Situation 1 - B
R e Behaviour y
R — Behaviour r
R  — Situation 2 - -
K ——
° ———— | Behaviour s
°
o
/Q . Behaviour |
R —_— Situation n -
e

> Behaviour k




Introduction

* Desirable characteristics:
— Robustness
— Efficiency
— Reconfigurability
— Scalability

* Adaptation required
 Multiagent Learning



Challenges

* From single to multiagent
— RL well developed for single agent case
— Non-predictable
— Convergence guarantees lost
— No general theory

e How to scale?



Challenges

Reinforcement Learning:

— Algorithm: select actions with high values (maximize
expected reward)

— Training: update values

Neuro-evolutionary control:
— Algorithm: map states to actions
— Training: evolutionary search through weight space

Both algorithms make basic assumptions about
environment

What happens when multiple agents learn
together?



Challenges

* Large state-action spaces

* Credit assighment problem

— Delayed feedback
— Structural credit assignment



Challenges

System Rewards: Start with an analogy

* Full System @) Company

* System objective @)  Valuation of
company

« Agents &) Employees

* Agent objectives 4  Compensation
packages



Challenges

« Design problem (faced by the board):

— How to set/modify compensation packages (agent
objectives) of the employees to increase valuation of
company (system objective)

« Salary

« bonuses

» Benefits

« Stock options

— Note: Board does not tell each individual what to do.

They set the “incentive packages” for employees
(including the CEQ).



Challenges

Key Concepts for Coordinated MAS

Factoredness: Degree to which an agent’s objective is
“aligned” with the system objective

- e.g. stock options are factored w.r.t. company valuation.

Learnability: Based on sensitivity of an agent’s private objective
to changes in its state (signal-to-noise).
- e.g., performance bonuses increase learnability of agent’s objective

Interesting question: If you could, would you want everyone’s
objective to be valuation of company?
- Factored, yes; but what about learnability?

MultiAgent Systems (2nd edition), MIT Press, 2013, edited by G. Weiss



Challenges

General Solution

To get agent objective with high factoredness and learnability, start with:

g2.(2)=G(2)-G(Z_,+c,)

g; is aligned with G
- G(z,;+c) is ind_ependent of |
g; has cleaner signal than G

If g, G differentiable, then: G(z,+c;) removes noise

d0G(Z_+c,) _
0Z.

0

0g.(2) JG(z)
k oz, oz




Challenges

General Solution

» Two examples for c;.

° C], = O
8,(2)=G(2)-G(Z)
° C.= QA.

] 1

gl(Z) — G(Z) — G(Z—i + ai) “world with average me”



Challenges
Research issues
* |In general agents may not be able to compute g:

— Limited Observability

— Restricted Communication
— Temporal separation

— Spatial separation

— Limited Computation

« Solutions:
— Estimate missing information
— Leverage local information
— Approximate G or z

— Trade-off factoredness vs. learnability



Reinforcement Learning

e Learning about, from, and
while interacting with an external environment

* Learning what to do—how to map situations to
actions—so as to maximize a numerical reward signal



Reinforcement Learning

Learner is not told which actions to take
Trial-and-Error search

Possibility of delayed reward
— Sacrifice short-term gains for greater long-term gains

The need to explore and exploit



Reinforcement Learning

; r,

‘ I

’[ Agent }

7_,

r f

Seus
5 [4}

Environment ]4—

action
a,

Agent observes state at stepz: s, €S

produces action atstepz: a, € A(s,)

gets resulting reward:  r

and resulting next state: s

r+1

T:SxAxS—[0,1]

c N

r+1



Reinforcement Learning

Suppose the sequence of rewards afterstep 71s:

rt+1 9’/'t+2 9’/}+3 5 e

What do we want to maximize?
In general,

we want to maximize the expected return E{Rt} foreach step t.

Episodic tasks: interaction breaks naturally into
episodes, e.g., plays of a game, trips through a maze.

R =r+7,+..+71;

t t+1 & 1+2 /
[ Immediate mw%
Long term reward 1




Reinforcement Learning

Continuing tasks: interaction does not have natural episodes.

Discounted return:

(%)
2 k
Rr =7/;-|-1 +yrt-|-2 +y ;/;+3 o= EV 7/;+k-|-1'
k=0

where y, 0 <y <1 1is the discount rate

shortsighted 0 <y — 1 farsighted



Reinforcement Learning

® “the state” at step t, means whatever information is available to the
agent at step t about its environment.

® A state should have the Markov Property:

t+ t TAS A £

’
Pr{st+1 =s'r, =r|s.a,rs 1,at_l,...,rl,so,ao}=

forall s, 7, and histories 5., a7, s_.,a _,, ...V, S, Q.
t "t 1 1 r¥0 0

t t=



Reinforcement Learning

If a reinforcement learning task has the Markov Property, it is basically a Markov
Decision Process (MDP).
If state and action sets are finite, it is a finite MDP.

To define a finite MDP, you need to give:

e state and action sets
e one-step “dynamics” defined by transition probabilities:

P =Pr{s*“1 =5|s =54 =a} foralls, s" €S, a EA(S).

S

e reward probabilities:

s =84 =a,95,,, =s’} forall s, 5" €S, a€A(s).

Rg, = Eqr

t+l



Reinforcement Learning

® Most RL methods: estimating value functions

® Avalue of a state s, given a policy r, is the total
amount of reward an agent can expect to
accumulate over the future starting in s



Reinforcement Learning

 The Learning Task:

e learnpolicy II:§ — 4 that maximizes:

Elr +yr, +y°r,, +..]

1+2

e fromanystatein$



Reinforcement Learning
Value Functions

Action - value function for policy 7 :

Q” (S,Cl) = En %t‘st = S9at = Cl}= En{z ykrt+k+1
=0

S, =s,a, = a}

State - value function for policy 7 :

Vﬁ (S) = En %t‘st = S}= En{i ykrt+k+1
=0

SZ=S}



Reinforcement Learning
Bellman Equations

* Rewriting the previous state-value function:
State - value function for policyr :
$ = .S‘}

Vi(s)=E, {R[ | Y =S}= E, {i YT
£=0

e |s recursive

Leads to:
Bellman equation forV™ :
HOEMNE a)Z PolR:, +yvaes) ]

— a system of |S] simultaneous linear equations



Reinforcement Learning
Bellman Equations

Optimal value function: V*(s) = max _V™(s), for all sin S
Analogous for Q* (optimal action-value):
Q*(s,a)=max, Q"(s,a) forallsinS, ain A

V*(s) = max, Q"' (s,a) (exercise, calculate this and find
a recursive expression in V*)



Reinforcement Learning
Bellman Equations — Dynamic programming

* Finding optimal policy by explicitly solving Bellman:
Dynamic Programming

e Rarely useful in practice:
— You need to know the dynamics of the environment
— A lot of computational resources
— Markov property

* RL typically uses an approximation method



Reinforcement Learning
Value lteration

* The update rule requires to know the dynamics of
the environment.

e Typical is to use temporal difference methods to
overcome this problem, like Q-learning

e Look at the difference between the current estimate
of the value of a state and the discounted value of
the next state and the reward received.



Reinforcement Learning
Value Iteration

V(s,) < V(s,) e .., +y VG, -Vs) ]

t

O ® O O ® ® O

® QO %QQ QR

\ | / \ | /

,
—
~
NS
~—

MultiAgent Systems (2nd edition), MIT Press, 2013, edited by G. Weiss



Reinforcement Learning
Advantages of TD Learning

 TD methods do not require a model of the environment, only
experience

 TD, methods can be fully incremental
— You can learn before knowing the final outcome
* Less memory
* Less peak computation
— You can learn without the final outcome
* From incomplete sequences



Reinforcement Learning
Q-learning

Q-Learning (Watkins, 1989)
Value Function approach

Q(s,a): Maximise total amount of reward agent can
expect to accumulate over future starting from state s
and taking action a

Q(s,a) = Q(s,a) + a[r + y maxQ(s’,a’)- Q(s,a)]



Reinforcement Learning
Policy Iteration

* Another method for finding the optimal policy.

* Here the policy mis directly manipulated
instead of first looking for the optimal value
function.

 Examples: learning automata (Cross learning),
evolutionary algorithms



Reinforcement Learning
Exploration-Exploitation

How to select an action based on the values of the
states or state-action pairs?

Succes of RL depends on trade-off:
— Exploration
— Exploitation

One needs to sufficiently explore
One needs to exploit in time

Different methods: random, greedy, e-greedy,
Boltzmann



Reinforcement Learning
Exploration-Exploitation

Boltzman:

expl &%)
P(a|s)=—

ZeXp[Q(;’b)]

If T is large, all probabilities are equal
T is small, better actions are favored
So start with large T and decrease it gradually



YT > RN H 00w

Reinforcement Learning
Classification of RL methods

Model of the environment?

YES NO

YES |Dynamic Temporal
Programming |Difference (TD)

NO Monte Carlo
Methods




Reinforcement Learning
multiagent settings

Environment

How can multiple RL agents
learn to coordinate on joint
optimal solutions?

Goals
View of world
Actions
Knowledge




Reinforcement Learning
multiagent settings

- Each agent has just incomplete information

* Each agent 1s restricted 1n its capabilities

* System control 1s distributed

* Data 1s decentralized

* Computation 1s asynchronous

« Communication not for free, often unreliable
and delayed

In sum the theoretical single agents results are gone!



Reinforcement Learning
multiagent settings

Two extreme approaches:

* Ignore the presence of other agents (and as such the
Markov property)

— oscillatory behaviour may arise

* Fix the Markov property: Joint Action Space Learning
e.g. multi-agent Q-learning, (Hu and Welmann) :

Q(s,ay,..,a,)

- but, violates the basic principles of MAS



Reinforcement Learning
Extensions to MAS

* Multiagent MDP
e Markov Games



Reinforcement Learning
some state-of-the-art algorithms

Joint Action Learning
Nash-Q learning
Gradient Ascent
Extended RD
Awesome



Other Paradigms



Evolutionary Game Theory
key ideas
* Classic:

— Economical theory (von

Neumann, Morgenstern, later
Nash)

— Normative Theory

— Modeling interactions through
games

— CENTRAL CONCEPT: Nash
equilibrium




Evolutionary Game Theory
key ideas

 Evolutionary (John Maynard-Smith):

— Games are played repeatedly

— Descriptive theory

— Players are not hyper rational, but
also biologically and socially
conditioned

— CENTRAL CONCEPT 1:
Evolutionary Stable Strategies

— CENTRAL CONCEPT 2 :
Dynamic models: Replicator Equations

MultiAgent Systems (2nd edition), MIT Press, 2013, edited by G. Weiss



Evolutionary Game Theory
Example interaction

Strategies
 Example: Prisoners DiIemW b
C 3, (©,5)

Prisoner 1
D / (5, 0) (1,1)

Players
y Payoff (Utility)



Evolutionary Game Theory
General form and more examples

Action 1 Action 2
Action 1 a;,bqq a;,by,
Action 2 a,1,05; 355,05,

PD Defect Coop. BoS Movie Theatre
Defect 1,1 5,0 Movie 2,1 0,0
Coop. 0,5 3,3 Theatre 0,0 1,2

MP Heads Tails
Heads 1,-1 -1,1
Tails -1,1 1,-1




Evolutionary Game Theory
Nash Equilibrium

* Concept from traditional GT

* Hyper rational players, which
choose best action

* Static concept

* Intuitively: A Nash equilibrium is a
strategy profile for a game, such that
no player can increase its payoff by

changing its strategy, while the other
players keep their strategy fixed.




Evolutionary Game Theory
Replicator equations

e Evolutionary process: mutation and selection

* How does a system consisting of different strategies
change over time?

* each replicator represents one strategy

* General form:

d);i =[(A4x), — x.Ax]x,

* X, is the density of strategy s. in the population
* A is the payoff matrix



Evolutionary Game Theory
Example replicator equations

Prisoners’ dilemma Battle of the sexes




Evolutionary Game Theory
Relating RL and EGT

* Examined RL-algorithms:
— Cross Learning (Sarin)
— Learning Automata
— Boltzmann Q-learning, Lenient-Q
— Regret Minimization
* New algorithm derived:
— Extended Replicator Dynamics
— FAQ-learning, LFAQ-learning



Evolutionary Game Theory
Derivation Q-learning Dynamics

dx.

=x..at((A4 . —xA + X..AX E X . 1hn
f i y i y [ a J

dy

!

d; = y.at((Bx), — yBx)+ y, az y, ln( )



"
ws| 10 |
06 | |
04| J
02V 1 7 72 7 s e e s s
0 - . L :
0.2 0.4 0.6 0.8 1

Evolutionary Game Theory
Example Q-learning Dynamics

Prisoner’s Dilemma

Visualization of RD

1

0.8

0.6

04

0.2

0

0.2

0.4 0.6 0.8

Visualization of Q-learning traces




Evolutionary Game Theory
Example Q-learning Dynamics

Matching Pennies

1 1
e “
el ]
T e

0 0

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8




Evolutionary Game Theory

Non self-play: polynomial weights vs L _,

Prisoner’s Dilemma

1 1
{
.............. ! ]
VoY
08 F 1 v vy ‘ "o
06 L . . . 06 — \gs\%_—
0.4 | l
4 |
0.2 s 4 ] ': : 02 —
L f (
4 /' /
[ |
; 0

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8 1



Evolutionary Game Theory
evolutionary dynamics of advanced algorithms

Method Evolutionary model

FAQ % = %[(Ay); — x" Ay + xaX jx;in(¥)

LF.'\Q W; — X' A | &EA i. "-7, : .z:.:.,;

duy _ @y T . Xy
at z (i —x"u)+xa) i xqin(3)

FALA :‘ = o [ (Ay); — xT Ay

Y, ty . /
FAQ | .
i y=
LFAQ | \\JS

Battle of the Sexes Prisoners’ Dilemma Matching Pennies




Swarm Intelligence as
Multiagent learning paradigm



igence

Swarm Intell
What is swarm intelligence

?

five

, self-organizing collec

“The emergent

’)

imple agents

intelligence of a group of s

(Bonabeau, 1999)




Swarm Intelligence
What is swarm intelligence?

— Large group of cognitive limited individuals
— Due to local interactions group intelligence
emerges

— No central control structure

AR WA o T

MultiAgent Systems (2nd edition), MIT Press, 2013, edited by G. Weiss



Swarm Intelligence
What is swarm intelligence?

* Examples of such organization:
— Nest construction
— Breed care

— Nest selection

MultiAgent Systems (2nd edition), MIT Press, 2013, edited by G. Weiss



Swarm Intelligence
Multiagent learning

Ant and Bee colonies learn as a group

Cooperative System

Recruitment
Navigation

— First randomly

— Use search experience

Foraging

area

Foraging
area




Swarm Intelligence
Multiagent learning — Ant Colonies

 Recruitment: indirect via environment
* Navigation:

— First randomly

— Use pheromones as search experience



Swarm Intelligence
Multiagent learning — Ant Colonies

Foraging
area

J I

// S =R

Ny -
AN i 2
NN
4
3
Nest
Foraging
area
4

Foraging

area

/Ag“::« /\“\ oo
4 i N\
\\ —:f_;/ \ /‘5/

Foraging
area

Jl

L

Nest

Foraging
area




Swarm Intelligence
Multiagent learning — Ant Colonies

Tl

Tij(t +1) = (1 —p) -7 (t) + D ATE(t) V(i j)
k=1

A { 1AL () if arc (i, 7) is used by ant &
ATE () =
ij \".

0 otherwise

if j € NF

pE(t) = [735 (D]* - [135]°
2] Z[E.f\-"f‘ [Til(t)](}: . [777?[]"3



Swarm Intelligence
Multiagent learning — Bee Colonies

* Recruitment: directly in nest
* Navigation:
— First randomly (Levy flight)
— Using path integration as search experience

* Path integration vector: representation
insect’s knowledge on distance and angle to

food source



Swarm Intelligence
Multiagent learning — Bee Colonies

MultiAgent Systems (2nd edition), MIT Press, 2013, edited by G. Weiss



Swarm Intelligence
Multiagent learning — Bee Colonies

10m

MultiAgent Systems (2nd edition), MIT Press, 2013, edited by G. Weiss



Neuro-Evolution as
Multiagent learning paradigm



Neuro-Evolution
Learning Agents: Neural Networks

— Simple Neural Network for agent:

« Agent has N actions

« Agent has to map a set of observations (other
agent actions, past history) to an action.




Neuro-Evolution
Learning Agents: Neural Networks

— Simple Neural Network for agent:

« Agent has N actions

« Agent has to map a set of observations (other agent
actions, past history) to an action.
» Use teacher to learn the weights
— At teach time step:
»  Take action
»  Compare result to teacher’s suggested action
» Update weights so resulting action is closer to teacher
» Use search algorithm to learn the weight
— At each time step:
Start with initial random networks
Select a network (90% best, 10% random)
Perturb the weights (mutation)
Use network to select action,
Evaluate system performance
Drop worst network from pool, goto 2.

DU AN WN =



Neuro-Evolution
Learning Agents: Neural Networks

— Simple Neural Network for agent:

» Agent has N actions

« Agent has to map a set of observations (other agent
actions, past history) to an action.
» Use teacher to learn the weights
— At teach time step:
»  Take action
»  Compare result to teacher’ s suggested action
»  Update weights so resulting action is closer to teacher

» Use search algorithm to learn the weight
— At each time step:
Start with initial random networks
Select a network (90% best, 10% random)
Perturb the weights (mutation)
Use network to select action,
Evaluate system performance
Drop worst network from pool, goto 2.

DUTN WN =



Neuro-Evolutionary Control

ek

1. At t=0 initialize N neural networks



Neuro-Evolutionary Control

et

1. At t=0 initialize N neural networks
2. Pick a network using e-greedy alg (e=.1) k %



Neuro-Evolutionary Control

1. At t=0 initialize N neural networks
2. Pick a network using e-greedy alg (e=.1)
3. Randomly modify network parameters




A W IN -

Neuro-Evolutionary Control

. At t=0 initialize N neural networks

Pick a network using e—greedy alg (e=.1)
Randomly modify network parameters
Use network on this agent for T>>t steps

‘o
K
a5 <



U1 D W N =

Neuro-Evolutionary Control

. At t=0 initialize N neural networks % % %
. Pick a network using e-greedy alg (e=.1) k %
Randomly modify network parameters

Use network on this agent for T>>t steps -4

Evaluate network performance % IE




o U1 AN W N -

Neuro-Control

. At t=0 initialize N neural networks

Pick a network using e—greedy alg (e=.1)
Randomly modify network parameters
Use network on this agent for T>>t steps
Evaluate network performance

Re-insert network into pool




. At t=0 initialize N neural networks

Neuro-Evolutionary Control

Pick a network using e—greedy alg (e=.1) )
Randomly modify network parameters |
Use network on this agent for T>>t steps -4

Evaluate network performance IE
Re-insert network into pool r :

Remove worst network from pool




0O NN O U1 AN W N —

Neuro-Evolutionary Control
At t=0 initialize N neural networks % % %
Pick a network using e—greedy alg (e=.1) k %
Randomly modify network parameters
Use network on this agent for T>>t steps -4

Evaluate network performance IE
Re-insert network into pool r :

Remove worst network from pool

. Go to step 2 % % %



Case Study: Air Traffic Flow
Management



Air Traffic Flow Management

Current Situation

— 40,000+ flights operate in the US airspace in one day
— Delays caused by weather and airport conditions:

« 1,682,700 hours of delay (2007)
« 740,000,000 gallons of fuel wasted (2007)

— Estimated cost impact: over $41 billion (2007)

Moving forward
— Threefold increase in air traffic
— Increased heterogeneity of aircraft

Need Algorithmic solution
— Infrastructure will not change significantly



Current Air Traffic Management

 Air Traffic decisions made at four levels:

1. Airspace Management (6 hours to 1 year)
— Game Plan
— Centralized

2. National Flow (2-8 hours)
— Centralized

3. Regional Flow (20 min-2 hours)
— Hierarchical

4. Separation Assurance (2-30 minutes)
— Air traffic controllers



Current Air Traffic Management

 Air Traffic decisions made at four levels:

1. Airspace Management (6 hours to 1 year)
— Game Plan
— Centralized

2. National Flow (2-8 hours)
— Centralized

3. Regional Flow (20 min-2 hours
— Hierarchical

4, Separation Assurance (2-30 minutes)
— Air traffic controllers

MultiAgent Systems (2nd edition), MIT Press, 2013, edited by G. Weiss



Multi Agents for Air Traffic ?

« Advantages:
— Large distributed problem
— Naturally decentralized
— Human senses are overwhelmed by data

* Challenges:
— Humans have to remain in the loop
— Agent approach needs to be “transparent”
— Allow humans to take over
— Help humans don’ t replace them



Snapshot of the airspace

o Ll g W
AT - o
/:@:JO D-..I@D
7 s
0, ..Wll.—.p_N.VUnwgw
=l Y Ehg
T o b @.ﬂ%\oomrrf
Wl N
\8 i e R S g
| {a} IR aoTy
Y _dr@a...fm\\ %4
SR° 1 T e oa%w
fu) ] @O.Oﬂg o (e ;Od
o _o oTlg ENY Fle
IR
~ 10 i
___olq..wom.“wo RN m_ooncmh m w@q e moa;“,_ .
NG UL AR ke WO Oy oo (o
- e i By < Lo ..\%\ ot mﬁa@.
h, a0l o ...W\. // o 0 ] \A..n.
QO.L.. % 5 “ /r / o ol 4
75| ikewls s g TV Rel o e B
gt o , K. J o o og o la &
oy e Y IR = el
\ oy o1& (190 feg o, - w;W\waF.-JMv %L
|
/ o o owa =& ST e oo.?&
/ o e T AR lg// % i
4 3 @ a2 a4 e aQ o s
\ & oYo| greahiro Nt :
oL d farae) ] 5 00 /\.w _ 1 a M.rn@l g
J (S o o_o 8 )] I & m{; (K
1o o o {ra e u] i\ oo ol o o 7
N 9S50~ i el Ry
_ "ol J.OJ.&«.!X 1o _
M 0.2 \\D|“ a2 < o 153 Sl ﬁﬁu.
N Ao e =] P 5 e L ey B
& i [ i o _
o & 19/ Jamit o G- e e il ? |
4 o 3° e/ e _ o [ o IF - &0 ...... 4 fed
o §< g e o oD 5
°\ Lol e T o2\ N o&%ﬂf
o N e | S TR SR
—e— o 277 o @ (=2
o a 7 o0 =} Yoo
5 Iﬂ,\l > h o _ o o@ o a3 ik &u 9 Bo0 Wov/lkn.v\..r!rrl
o o ¢ o _ . [ .“;.u DM@ .w
o o o o Om.._ m o o » e £4
° _ o b o
o ol o o _\ o
q
° _ } o o 0% - \Q
o o S T N
0 i % s~y
© I |
_ d %. ‘w& ol@ o |R ._..ll.\
° o _ ° o_- ofl® - 1 .\
| =} ° 8 Q.\
lo od, o “ o
o ° o o/ o O ‘Qi\\\
o o o ol® ° /
b ¢ ° | g
o
o
o |_ R ° \H.\
ros o~
b/ ’ ma’ 9 i °© n% 2 l\kl W
o ; \ i
o B! o _ © o a Fi \\.\:\ \.\.\l\
i~
N\I\l|\ \\.i/M\\

MultiAgent Systems (2nd edition), MIT Press, 2013, edited by G. Weiss



First steps

 What are we measuring?

— System performance? (reward/objective/utility/
evaluation)

 How are we measuring it?

— System snapshots (state)

* What about System dynamics?

— Simulators



What are we after?

* How do we know if we succeed?

* Define a system level reward

— Minimize congestion

— What about delays?



System Reward Function
* Minimize congestion

C(z)= ZCS (2)

seS

2
CSJ(Z) = Z (ks,t - Cs) . Ik >c
B(z) = aEZA B(2) s,t7s

5

* Minimize delays

B(z)=) B,(z)

acA

B, (2)=0,-7,) 1,



System Reward Function

Full state vector

/

Lateness-congestion
tradeoff coefficient

G(z)=—(B(2) +>¢ C(2))

/

Lateness Term

Congestion Term




Multiagent Learning Approach

We need 4 more things



Agent-Based Air Traffic Management
1. ldentify agents

2. ldentify actions

3. Derive agent objective functions

4. Select agent learning algorithm



ldentify Agents

« Agents as aircraft?
— 20000+ agents
— Little data to train agents
— Actions conflict with pilots

« Agents as routes?
— Not well defined agents
— Actions of routes?

« Agents as fix locations?
— Number of agents vary with need
— All flight plans contain at least one agent fix.
— Agents have “simple” actions: set metering restrictions

— Agents can be active or inactive (e.g., live around
congestion).



ldentify Agents

« Agents as fix locations?
— Number of agents vary with need
— All flight plans contain at least one agent fix.
— Agents have “simple” actions: set metering restrictions

— Agents can be active or inactive (e.g., live around
congestion).



Agent Actions

Agent

« Agent actions

— Set miles in trail
— Ground hold
— Re-route



Agent-Based Air Traffic Management

1. ldentify agents
— Fixes

2. ldentify actions
— Miles in Trail
— Ground holds
— Reroutes

3. Select agent learning algorithm

4. Derive agent reward functions



Basic Algorithm

An agent keeps table of Values for each action:
V(a)

Policy:

— With probability epsilon choose random action
— Otherwise choose action with highest value

Agent takes an action and receives a reward R
Value update: V(a)«— (1-a) V(a)+a R



Difference Reward

* Look at difference between system reward, and
system reward with agent taking constant action c;

D, (Z) = G(Z) ~ G(Z—i T Ci)

System System Reward
Reward Without i’ s influence

D is hard to compute:

— D requires n + 1 runs of FACET for every learning episode
— G requires 1 run

« Solution:
— Estimate difference reward (first and second set of results)
— Model the reward (third set of results)



Difference Reward

« Look at difference between system reward, and system reward
with agent taking constant action c;

Di(Z) = G(Z)_G(Z—i +Ci)

« Key theoretical result:

0G(z_,+¢c) _,

0z, . d2.(2) 9G(2)
dz, o0z



Difference Reward

Look at difference between system reward, and system reward
with agent taking constant action c;

Di(Z) = G(Z)_G(Z—i +Ci)

Key theoretical result:

D and G are aligned:

“What’s good for me is good for the system”



Agent-Based Air Traffic Management

1. ldentify agents
— Fixes

2. ldentify actions
— Miles in Trail
— Ground holds
— Reroutes

3. Derive agent objective functions
— Difference objective

4. Select agent learning algorithm
— Simple reinforcement learning



Conclusions

Young dynamic field

Many challenges and unresolved issues, such as:
— Scalability (nr of agents, states)

— Incomplete information

Basics and Foundations

— Multiagent RL

— Evolutionary Game Theory

— Swarm Intelligence

— Neuro-evolutionary control

Need for broader, interdisciplinary approach



