Multiagent Learning

Karl Tuyls & Kagan Tumer

Overview

- Introduction
- Challenges
- Multiagent Reinforcement Learning
- Other Paradigms
 - Evolutionary Game Theory
 - Swarm Intelligence
 - Neuro-Evolutionary Control
- Case study
- Conclusions

Introduction

Introduction

Impossible to foresee all situations beforehand

Introduction

- Desirable characteristics:
 - Robustness
 - Efficiency
 - Reconfigurability
 - Scalability
- Adaptation required
- Multiagent Learning

- From single to multiagent
 - RL well developed for single agent case
 - Non-predictable
 - Convergence guarantees lost
 - No general theory
- How to scale?

- Reinforcement Learning:
 - Algorithm: select actions with high values (maximize expected reward)
 - Training: update values
- Neuro-evolutionary control:
 - Algorithm: map states to actions
 - Training: evolutionary search through weight space
- Both algorithms make basic assumptions about environment
- What happens when multiple agents learn together?

- Large state-action spaces
- Credit assignment problem
 - Delayed feedback
 - Structural credit assignment

System Rewards: Start with an analogy

- Full System
- System objective
- Agents
- Agent objectives

Company

Valuation of company

Employees

Compensation packages

- Design problem (faced by the board):
 - How to set/modify compensation packages (agent objectives) of the employees to increase valuation of company (system objective)
 - Salary
 - bonuses
 - Benefits
 - Stock options
 - Note: Board does not tell each individual what to do.
 They set the "incentive packages" for employees (including the CEO).

Key Concepts for Coordinated MAS

- Factoredness: Degree to which an agent's objective is "aligned" with the system objective
 - e.g. stock options are factored w.r.t. company valuation.
- Learnability: Based on sensitivity of an agent's private objective to changes in its state (signal-to-noise).
 - e.g., performance bonuses increase learnability of agent's objective
- Interesting question: If you could, would you want everyone's objective to be valuation of company?
 - Factored, yes; but what about learnability?

Challenges General Solution

To get agent objective with high factoredness and learnability, start with:

$$g_i(\mathbf{Z}) = G(\mathbf{Z}) - G(\mathbf{Z}_{-i} + c_i)$$

g_i is aligned with G G(z_{-i}+c_i) is independent of i g_i has cleaner signal than G

G(z_{-i}+c_i) removes noise

• If g, G differentiable, then:

$$\frac{\partial G(\mathbf{Z}_{-i} + c_i)}{\partial \mathbf{Z}_{i}} = 0$$

$$\frac{\partial g_i(\mathbf{Z})}{\partial \mathbf{Z_i}} = \frac{\partial G(\mathbf{Z})}{\partial \mathbf{Z_i}}$$

Challenges General Solution

Two examples for c_i:

•
$$c_i = 0$$

"world without me"

$$g_i(\mathbf{Z}) = G(\mathbf{Z}) - G(\mathbf{Z}_{-i})$$

•
$$c_i = a_i$$

$$g_i(\mathbf{Z}) = G(\mathbf{Z}) - G(\mathbf{Z}_{-i} + a_i)$$

"world with average me"

Research issues

- In general agents may not be able to compute g:
 - Limited Observability
 - Restricted Communication
 - Temporal separation
 - Spatial separation
 - Limited Computation
- Solutions:
 - Estimate missing information
 - Leverage local information
 - Approximate G or z
 - Trade-off factoredness vs. learnability

- Learning about, from, and while interacting with an external environment
- Learning what to do—how to map situations to actions—so as to maximize a numerical reward signal

- Learner is not told which actions to take
- Trial-and-Error search
- Possibility of delayed reward
 - Sacrifice short-term gains for greater long-term gains
- The need to explore and exploit

Agent observes state at step t: $s_t \in S$

produces action at step t: $a_t \in A(s_t)$

gets resulting reward: $r_{t+1} \in \Re$

and resulting next state: s_{t+1}

$$T: S \times A \times S \rightarrow [0,1]$$

Suppose the sequence of rewards after step *t* is :

$$r_{t+1}, r_{t+2}, r_{t+3}, \dots$$

What do we want to maximize?

In general,

we want to maximize the **expected return**, $E\{R_t\}$, for each step t.

Episodic tasks: interaction breaks naturally into episodes, e.g., plays of a game, trips through a maze.

Continuing tasks: interaction does not have natural episodes.

Discounted return:

$$R_{t} = r_{t+1} + \gamma r_{t+2} + \gamma^{2} r_{t+3} + \cdots = \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1},$$

where γ , $0 \le \gamma \le 1$, is the **discount rate**

shortsighted $0 \leftarrow \gamma \rightarrow 1$ farsighted

- "the state" at step t, means whatever information is available to the agent at step t about its environment.
- A state should have the Markov Property:

$$\Pr\left\{s_{t+1} = s', r_{t+1} = r \mid s_{t}, a_{t}, r_{t}, s_{t-1}, a_{t-1}, \dots, r_{1}, s_{0}, a_{0}\right\} = \\ \Pr\left\{s_{t+1} = s', r_{t+1} = r \mid s_{t}, a_{t}\right\}$$

for all s', r, and histories s_t , a_t , r_t , s_{t-1} , a_{t-1} , ..., r_1 , s_0 , a_0 .

- If a reinforcement learning task has the Markov Property, it is basically a Markov Decision Process (MDP).
- If state and action sets are finite, it is a **finite MDP**.
- To define a finite MDP, you need to give:
 - state and action sets
 - one-step "dynamics" defined by transition probabilities:

$$P_{ss'}^a = \Pr\{s_{t+1} = s' \mid s_t = s, a_t = a\} \text{ for all } s, s' \in S, a \in A(s).$$

reward probabilities:

$$R_{ss'}^a = E\left\{r_{t+1} \mid s_t = s, a_t = a, s_{t+1} = s'\right\} \text{ for all } s, s' \in S, a \in A(s).$$

- Most RL methods: estimating value functions
- A value of a state s, given a policy π , is the total amount of reward an agent can expect to accumulate over the future starting in s

- The Learning Task:
 - learn policy $\Pi: S \to A$ that maximizes:

$$E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + ...]$$

from any state in S

Reinforcement Learning Value Functions

Action - value function for policy π :

$$Q^{\pi}(s,a) = E_{\pi} \left\{ R_{t} \middle| s_{t} = s, a_{t} = a \right\} = E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \middle| s_{t} = s, a_{t} = a \right\}$$

State - value function for policy π :

$$V^{\pi}(s) = E_{\pi} \left\{ R_{t} \middle| s_{t} = s \right\} = E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \middle| s_{t} = s \right\}$$

Reinforcement Learning Bellman Equations

• Rewriting the previous state-value function: State-value function for policy:

$$V^{n}(s) = E_{n}\left\{R_{t} \mid s_{t} = s\right\} = E_{n}\left\{\sum_{k=0}^{\infty} \gamma^{k} \gamma_{t+k+1} \mid s_{t} = s\right\}$$

Is recursive

Leads to:

Bellman equation for V^n :

$$V^{n}(s) = \sum_{a} \pi(s, a) \sum_{s'} P_{ss'}^{a} \left[R_{ss'}^{a} + \gamma V^{n}(s') \right]$$

— a system of |S| simultaneous linear equations

Reinforcement Learning Bellman Equations

- Optimal value function: $V^*(s) = \max_{\pi} V^{\pi}(s)$, for all s in S
- Analogous for Q* (optimal action-value):
- $Q^*(s,a)=\max_{\pi}Q^{\pi}(s,a)$ for all s in S, a in A
- $V^*(s) = \max_a Q^{\pi^*}(s,a)$ (exercise, calculate this and find a recursive expression in V^*)

Reinforcement Learning Bellman Equations – Dynamic programming

- Finding optimal policy by explicitly solving Bellman:
 Dynamic Programming
- Rarely useful in practice:
 - You need to know the dynamics of the environment
 - A lot of computational resources
 - Markov property
- RL typically uses an approximation method

Reinforcement Learning Value Iteration

- The update rule requires to know the dynamics of the environment.
- Typical is to use temporal difference methods to overcome this problem, like Q-learning
- Look at the difference between the current estimate of the value of a state and the discounted value of the next state and the reward received.

Reinforcement Learning Value Iteration

MultiAgent Systems (2nd edition), MIT Press, 2013, edited by G. Weiss

Reinforcement Learning Advantages of TD Learning

- TD methods do not require a model of the environment, only experience
- TD, methods can be fully incremental
 - You can learn before knowing the final outcome
 - Less memory
 - Less peak computation
 - You can learn without the final outcome
 - From incomplete sequences

Reinforcement Learning Q-learning

- Q-Learning (Watkins, 1989)
- Value Function approach
- Q(s,a): Maximise total amount of reward agent can expect to accumulate over future starting from state s and taking action a

$$Q(s,a) \rightarrow Q(s,a) + \alpha[r + \gamma \max Q(s',a') - Q(s,a)]$$

Reinforcement Learning Policy Iteration

- Another method for finding the optimal policy.
- Here the policy π is directly manipulated instead of first looking for the optimal value function.
- Examples: learning automata (Cross learning), evolutionary algorithms

Reinforcement Learning Exploration-Exploitation

- How to select an action based on the values of the states or state-action pairs?
- Succes of RL depends on trade-off:
 - Exploration
 - Exploitation
- One needs to sufficiently explore
- One needs to exploit in time
- Different methods: random, greedy, ε-greedy, Boltzmann

Reinforcement Learning Exploration-Exploitation

Boltzman:

$$P(a \mid s) = \frac{\exp\left[\frac{Q(s,a)}{T}\right]}{\sum_{b=1}^{A} \exp\left[\frac{Q(s,b)}{T}\right]}$$

- If T is large, all probabilities are equal
- T is small, better actions are favored
- So start with large T and decrease it gradually

Reinforcement Learning Classification of RL methods

Model of the environment?

		YES	NO
	YES	Dynamic Programming	Temporal Difference (TD)
	NO		Monte Carlo Methods

B

?

Reinforcement Learning multiagent settings

How can multiple RL agents learn to coordinate on joint optimal solutions?

Reinforcement Learning multiagent settings

- Each agent has just incomplete information
- Each agent is restricted in its capabilities
- System control is distributed
- Data is decentralized
- Computation is asynchronous
- Communication **not** for free, often **unreliable** and **delayed**

In sum the theoretical single agents results are gone!

Reinforcement Learning multiagent settings

Two extreme approaches:

- Ignore the presence of other agents (and as such the Markov property)
 - → oscillatory behaviour may arise
- Fix the Markov property: Joint Action Space Learning e.g. multi-agent Q-learning, (Hu and Welmann):

$$Q(s,a_1,...,a_n)$$

→ but, violates the basic principles of MAS

Reinforcement Learning Extensions to MAS

- Multiagent MDP
- Markov Games

Reinforcement Learning some state-of-the-art algorithms

- Joint Action Learning
- Nash-Q learning
- Gradient Ascent
- Extended RD
- Awesome

• ...

Other Paradigms

Evolutionary Game Theory key ideas

• Classic:

- Economical theory (vonNeumann, Morgenstern, laterNash)
- Normative Theory
- Modeling interactions through games
- CENTRAL CONCEPT: Nash equilibrium

Evolutionary Game Theory key ideas

Evolutionary (John Maynard-Smith):

- Games are played repeatedly
- Descriptive theory
- Players are not hyper rational, but also biologically and socially conditioned
- CENTRAL CONCEPT 1:Evolutionary Stable Strategies
- CENTRAL CONCEPT 2 :

Dynamic models: Replicator Equations

Example interaction

Evolutionary Game TheoryGeneral form and more examples

	Action 1	Action 2
Action 1	a ₁₁ ,b ₁₁	a ₁₂ ,b ₁₂
Action 2	a ₂₁ ,b ₂₁	a ₂₂ ,b ₂₂

PD	Defect	Coop.
Defect	1,1	5,0
Coop.	0,5	3,3

BoS	Movie	Theatre
Movie	2,1	0,0
Theatre	0,0	1,2

MP	Heads	Tails
Heads	1,-1	-1,1
Tails	-1,1	1,-1

Nash Equilibrium

- Concept from traditional GT
- Hyper rational players, which choose best action
- Static concept
- Intuitively: A Nash equilibrium is a strategy profile for a game, such that no player can increase its payoff by changing its strategy, while the other players keep their strategy fixed.

Replicator equations

- Evolutionary process: mutation and selection
- How does a system consisting of different strategies change over time?
- each replicator represents one strategy
- General form:

$$\frac{dx_i}{dt} = [(Ax)_i - x.Ax]x_i$$

- x_i is the density of strategy s_i in the population
- A is the payoff matrix

Evolutionary Game Theory Example replicator equations

Prisoners' dilemma

Battle of the sexes

Evolutionary Game Theory Relating RL and EGT

- Examined RL-algorithms:
 - Cross Learning (Sarin)
 - Learning Automata
 - Boltzmann Q-learning, Lenient-Q
 - Regret Minimization
- New algorithm derived:
 - Extended Replicator Dynamics
 - FAQ-learning, LFAQ-learning

Evolutionary Game TheoryDerivation Q-learning Dynamics

$$\frac{dx_i}{dt} = x_i.\alpha\tau((A\overline{y})_i - \overline{x}A\overline{y}) + x_i.\alpha\sum_j x_j \ln(\frac{x_j}{x_i})$$

$$\frac{dy_i}{dt} = y_i.\alpha\tau((B\overline{x})_i - \overline{y}B\overline{x}) + y_i.\alpha\sum_j y_j \ln(\frac{y_j}{y_i})$$

Example Q-learning Dynamics

Prisoner's Dilemma

Example Q-learning Dynamics

Matching Pennies

Non self-play: polynomial weights vs $L_{R-\epsilon P}$

Prisoner's Dilemma

MultiAgent Systems (2nd edition), MIT Press, 2013, edited by G. Weiss

Evolutionary Game Theory evolutionary dynamics of advanced algorithms

Swarm Intelligence as Multiagent learning paradigm

Swarm Intelligence What is swarm intelligence?

"The emergent, self-organizing collective intelligence of a group of simple agents"

(Bonabeau, 1999)

Swarm Intelligence What is swarm intelligence?

- Large group of cognitive limited individuals
- Due to local interactions group intelligence emerges
- No central control structure

Swarm Intelligence What is swarm intelligence?

- Examples of such organization:
 - Nest construction
 - Breed care
 - Nest selection

Swarm Intelligence Multiagent learning

- Ant and Bee colonies learn as a group
- Cooperative System
- Recruitment
- Navigation
 - First randomly
 - Use search experience

Swarm Intelligence Multiagent learning – Ant Colonies

- Recruitment: indirect via environment
- Navigation:
 - First randomly
 - Use pheromones as search experience

Swarm Intelligence Multiagent learning – Ant Colonies

Swarm Intelligence Multiagent learning – Ant Colonies

$$\tau_{ij}(t+1) = (1-\rho) \cdot \tau_{ij}(t) + \sum_{k=1}^{m} \Delta \tau_{ij}^{k}(t) \quad \forall (i,j)$$

$$\Delta \tau_{ij}^{k}(t) = \begin{cases} 1/L^{k}(t) & \text{if arc } (i,j) \text{ is used by ant } k \\ 0 & \text{otherwise} \end{cases}$$

$$p_{ij}^{k}(t) = \frac{[\tau_{ij}(t)]^{\alpha} \cdot [\eta_{ij}]^{\beta}}{\sum_{l \in \mathcal{N}_{i}^{k}} [\tau_{il}(t)]^{\alpha} \cdot [\eta_{il}]^{\beta}} \qquad \text{if } j \in \mathcal{N}_{i}$$

if $j \in \mathcal{N}_i^k$

Swarm Intelligence Multiagent learning – Bee Colonies

- Recruitment: directly in nest
- Navigation:
 - First randomly (Levy flight)
 - Using path integration as search experience
- Path integration vector: representation insect's knowledge on distance and angle to food source

Swarm Intelligence Multiagent learning – Bee Colonies

Swarm Intelligence Multiagent learning – Bee Colonies

Neuro-Evolution as Multiagent learning paradigm

Neuro-Evolution

Learning Agents: Neural Networks

- Simple Neural Network for agent:
 - Agent has N actions
 - Agent has to map a set of observations (other agent actions, past history) to an action.

Neuro-Evolution

Learning Agents: Neural Networks

- Simple Neural Network for agent:
 - Agent has N actions
 - Agent has to map a set of observations (other agent actions, past history) to an action.
 - Use teacher to learn the weights
 - At teach time step:
 - » Take action
 - » Compare result to teacher's suggested action
 - » Update weights so resulting action is closer to teacher
 - Use search algorithm to learn the weight
 - At each time step:
 - 1. Start with initial random networks
 - 2. Select a network (90% best, 10% random)
 - 3. Perturb the weights (mutation)
 - 4. Use network to select action,
 - 5. Evaluate system performance
 - 6. Drop worst network from pool, goto 2.

Neuro-Evolution

Learning Agents: Neural Networks

- Simple Neural Network for agent:
 - Agent has N actions
 - Agent has to map a set of observations (other agent actions, past history) to an action.
 - Use teacher to learn the weights
 - At teach time step:
 - » Take action
 - » Compare result to teacher's suggested action
 - » Update weights so resulting action is closer to teacher
 - Use search algorithm to learn the weight
 - At each time step:
 - 1. Start with initial random networks
 - 2. Select a network (90% best, 10% random)
 - 3. Perturb the weights (mutation)
 - 4. Use network to select action,
 - 5. Evaluate system performance
 - 6. Drop worst network from pool, goto 2.

Neuro-Evolutionary Control

1. At t=0 initialize N neural networks

Neuro-Evolutionary Control

1. At t=0 initialize N neural networks

Neuro-Evolutionary Control

- 1. At t=0 initialize N neural networks
- 2. Pick a network using ε -greedy alg (ε =.1)
- 3. Randomly modify network parameters

Neuro-Evolutionary Control

- 1. At t=0 initialize N neural networks
- 2. Pick a network using ε -greedy alg (ε =.1)
- 3. Randomly modify network parameters
- 4. Use network on this agent for T>>t steps

Neuro-Evolutionary Control

- 1. At t=0 initialize N neural networks
- 2. Pick a network using ε -greedy alg (ε =.1)
- 3. Randomly modify network parameters
- 4. Use network on this agent for T>>t steps
- 5. Evaluate network performance

Neuro-Control

- 1. At t=0 initialize N neural networks
- 2. Pick a network using ε -greedy alg (ε =.1)
- 3. Randomly modify network parameters
- 4. Use network on this agent for T>>t steps
- 5. Evaluate network performance
- 6. Re-insert network into pool

Neuro-Evolutionary Control

- 1. At t=0 initialize N neural networks
- 2. Pick a network using ε -greedy alg (ε =.1)
- 3. Randomly modify network parameters
- 4. Use network on this agent for T>>t steps
- 5. Evaluate network performance
- 6. Re-insert network into pool
- 7. Remove worst network from pool

Neuro-Evolutionary Control

- 1. At t=0 initialize N neural networks
- 2. Pick a network using ε -greedy alg (ε =.1)
- 3. Randomly modify network parameters
- 4. Use network on this agent for T>>t steps
- 5. Evaluate network performance
- 6. Re-insert network into pool
- 7. Remove worst network from pool
- 8. Go to step 2

Case Study: Air Traffic Flow Management

Air Traffic Flow Management

- Current Situation
 - 40,000+ flights operate in the US airspace in one day
 - Delays caused by weather and airport conditions:
 - 1,682,700 hours of delay (2007)
 - 740,000,000 gallons of fuel wasted (2007)
 - Estimated cost impact: over \$41 billion (2007)
- Moving forward
 - Threefold increase in air traffic
 - Increased heterogeneity of aircraft
- Need Algorithmic solution
 - Infrastructure will not change significantly

Current Air Traffic Management

- Air Traffic decisions made at four levels:
 - 1. Airspace Management (6 hours to 1 year)
 - Game Plan
 - Centralized
 - 2. National Flow (2-8 hours)
 - Centralized
 - 3. Regional Flow (20 min-2 hours)
 - Hierarchical
 - 4. Separation Assurance (2-30 minutes)
 - Air traffic controllers

Current Air Traffic Management

- Air Traffic decisions made at four levels:
 - 1. Airspace Management (6 hours to 1 year)
 - Game Plan
 - Centralized
 - 2. National Flow (2-8 hours)
 - Centralized
 - 3. Regional Flow (20 min-2 hours)
 - Hierarchical
 - 4. Separation Assurance (2-30 minutes)
 - Air traffic controllers

Multi Agents for Air Traffic?

Advantages:

- Large distributed problem
- Naturally decentralized
- Human senses are overwhelmed by data

Challenges:

- Humans have to remain in the loop
- Agent approach needs to be "transparent"
- Allow humans to take over
- Help humans don't replace them

Snapshot of the airspace

First steps

- What are we measuring?
 - System performance? (reward/objective/utility/evaluation)
- How are we measuring it?
 - System snapshots (state)
- What about System dynamics?
 - Simulators

What are we after?

How do we know if we succeed?

Define a system level reward

Minimize congestion

- What about delays?

System Reward Function

Minimize congestion

$$C(z) = \sum_{s \in S} C_s(z)$$

$$C_{S(z)} = \sum_{a \in A} (z) = \sum_{t} (k_{s,t} - c_s)^2 \cdot I_{k_{s,t} > c_s}$$

Minimize delays

$$B(z) = \sum_{a \in A} B_a(z)$$

$$B_a(z) = (t_a - \tau_a) \cdot I_{t_a > \tau_a}$$

System Reward Function

Full state vector $G(z) = -(B(z) + \alpha \ C(z))$ Lateness Term Congestion tradeoff coefficient

Multiagent Learning Approach

We need 4 more things

Agent-Based Air Traffic Management

1. Identify agents

2. Identify actions

3. Derive agent objective functions

4. Select agent learning algorithm

Identify Agents

- Agents as aircraft?
 - 20000+ agents
 - Little data to train agents
 - Actions conflict with pilots
- Agents as routes?
 - Not well defined agents
 - Actions of routes?
- Agents as fix locations?
 - Number of agents vary with need
 - All flight plans contain at least one agent fix.
 - Agents have "simple" actions: set metering restrictions
 - Agents can be active or inactive (e.g., live around congestion).

Identify Agents

- Agents as fix locations?
 - Number of agents vary with need
 - All flight plans contain at least one agent fix.
 - Agents have "simple" actions: set metering restrictions
 - Agents can be active or inactive (e.g., live around congestion).

Agent Actions

Agent actions

- Set miles in trail
- Ground hold
- Re-route

Agent-Based Air Traffic Management

- 1. Identify agents
 - Fixes
- 2. Identify actions
 - Miles in Trail
 - Ground holds
 - Reroutes
- 3. Select agent learning algorithm

4. Derive agent reward functions

Basic Algorithm

- An agent keeps table of Values for each action:
 V(a)
- Policy:
 - With probability epsilon choose random action
 - Otherwise choose action with highest value

- Agent takes an action and receives a reward R
- Value update: $V(a) \leftarrow (1-\alpha) V(a) + \alpha R$

Difference Reward

 Look at difference between system reward, and system reward with agent taking constant action c_i

$$D_{i}(z) = G(z) - G(z_{-i} + c_{i})$$
System
Reward
Reward
Without *i'* s influence

- D is hard to compute:
 - D requires n + 1 runs of FACET for every learning episode
 - G requires 1 run
- Solution:
 - Estimate difference reward (first and second set of results)
 - Model the reward (third set of results)

Difference Reward

 Look at difference between system reward, and system reward with agent taking constant action c_i

$$D_i(z) = G(z) - G(z_{-i} + c_i)$$

Key theoretical result:

$$\frac{\partial G(\mathbf{Z}_{-i} + c_i)}{\partial \mathbf{Z}_{i}} = 0$$

$$\frac{\partial g_i(\mathbf{Z})}{\partial \mathbf{Z}_{i}} = \frac{\partial G(\mathbf{Z})}{\partial \mathbf{Z}_{i}}$$

Difference Reward

 Look at difference between system reward, and system reward with agent taking constant action c_i

$$D_i(z) = G(z) - G(z_{-i} + c_i)$$

Key theoretical result:

D and G are aligned:

"What's good for me is good for the system"

Agent-Based Air Traffic Management

- 1. Identify agents
 - Fixes
- 2. Identify actions
 - Miles in Trail
 - Ground holds
 - Reroutes
- 3. Derive agent objective functions
 - Difference objective
- 4. Select agent learning algorithm
 - Simple reinforcement learning

Conclusions

- Young dynamic field
- Many challenges and unresolved issues, such as:
 - Scalability (nr of agents, states)
 - Incomplete information
- Basics and Foundations
 - Multiagent RL
 - Evolutionary Game Theory
 - Swarm Intelligence
 - Neuro-evolutionary control
- Need for broader, interdisciplinary approach