Chapter 9

Trust and Reputation in Multiagent Systems

Dr. Jordi Sabater-Mir

III A – Artificial Intelligence Research Institute
CSIC – Spanish National Research Council

CSIC

Dr. Laurent Vercouter

LITIS Laboratory
INSA de Rouen

MULTIAGENT SYSTEMS
http://www.the-mas-book.info
From a local perspective, they are integrated into an agent decision process when it involves other agents in order to decide with whom to interact.

From a global perspective, they can be used as social control mechanisms.
2 - Computational representation of trust and reputation values
Exist many different ways to represent trust and reputation values

- **Simplicity**
 - Facilitates the calculation functions and the reasoning mechanisms.
 - Less information, the kind of reasoning that can be done is less sophisticated.

- **Expressiveness**
 - Allows elaborated reasoning mechanisms and sophisticated models.
 - More computational and storage capacity as well as complex reasoning algorithms.
• **Boolean**

True -> the trustee is trustworthy
False -> the trustee is untrustworthy

Not very useful because Trust (like reputation) is a notion eminently graded and therefore it is important to be able to express how much do you trust.

• **Numerical values**

Real or integer values in a range. (ex. [-1.0,1.0], [0,3000])

Examples:

- The trust in an agent X is 0.4
- The reputation of agent Y is -1

The most used representation by far.
• Qualitative labels

Finite sets of labels in an ordered set.

Examples:

\{very_bad, bad, neutral, good, very_good\}

Is a trust of 0.6 really different from a trust of 0.7 in terms of taking trust decisions?

These sets are mapped to integer numbers so in fact it is a way of reducing the number of output values to simplify the decision making process.

The loss of a fine grain comparison of trust and reputation values is compensated by a universally recognized semantics
- **Probability distribution**

Discrete probability distribution over a sorted discrete set.

Examples:

a) With a probability of 0.75 the behaviour of the agent will be very bad, with a probability of 0.25 it will be bad.

b) Bipolar agent, very bad or very good, never in the middle.

c) Unpredictable agent.
• **Fuzzy sets**

The reputation value is a fuzzy set over a range. The linguistic modifiers affect the fuzzy set to express the degree of precisison of the reputation value.

Example:

![Graph showing fuzzy sets with different linguistic modifiers](image)

The reliability of reputation is implicitly represented in the shape of the fuzzy set.
• Trust and reputation as beliefs

In a BDI architecture, the trust and reputation values should be represented in terms of beliefs.

Using beliefs to represent trust or reputation raises two main issues:

1. To define the content and the semantics of the specific belief.

 Example: Take the socio-cognitive theory proposed by Castelfranchi and Falcone claiming that "an agent i trusts another agent j in order to do an action α with respect to a goal ϕ"

 Trust is about an agent and has to be relative to a given action and a given goal.

 ForTrust model. Definition of a specific predicate $\text{OccTrust}(i, j, \alpha, \phi)$ holding for specific instances of a trustor (i), a trustee (j), an action (α) and a goal (ϕ). The $\text{OccTrust}(i,j,\alpha,\phi)$ predicate is used to represent the concept of occurrent trust that refers to a trust belief holding here and now.
Trust and reputation as beliefs

In a BDI architecture, the trust and reputation values should be represented in terms of beliefs.

Using beliefs to represent trust or reputation raises two main issues:
2. To link the belief to the aggregated data grounding it

Example: In BDI+RepAge the link consists in transforming each one of the probability values of the probability distribution used in RepAge into a belief.
• The reliability of a value

To which extent do we have to take into account a trust or reputation value in order to take a decision?

Are the foundations of that value strong enough to base a decision on it?

Some models add a measure of the reliability that the trust or reputation value has.

Examples:

 Associate a number to the trust or reputation value that reflects how reliable it is (ex. ReGreT).

 The widthness of the fuzzy set reflects the reliability of the value (ex. AFRAS).
3 – Trust processes in multiagent systems
Trust evaluation or trust decision

A dual nature of trust:

• Trust as an **evaluation**
 – « *Trust is the subjective probability by which an individual, A, expects that another individual, B, performs a given action on which its welfare depends* » [Gambetta, 88]
 – e.g.: I trust that my medical doctor is a good surgeon

• Trust as an **act**
 – Trust is also the « *decision and the act of relying on, counting on, depending on [the trustee]* » [Castelfranchi & Falcone, 10]
 – E.g.: I decide that my medical doctor will perform a surgery on me
General overview of trust processes

• Trust evaluation
 – A trustor X uses various information sources to decide if a trustee Y is trustworthy
 – It consists in a set of social evaluations (either images or reputations)

• Trust decision
 – A trustor X decides if a trustee Y can be relied on for a given task
 – It is a decision process taking into account trust evaluations
Trust processes

- Direct experiences
- Communicated experiences
- Social information
- Images
- Reputations
- Context
- Self motivations

Trust evaluations

Trust decisions

Actions

3 – Trust processes in multiagent systems
Trust evaluations (1)

Inputs coming from different sources

- **Direct experiences**
 - Direct interactions between the trustor and the trustee

- **Communicated experiences**
 - Interactions between the trustee and another agent communicated to the trustor

- **Social information**
 - Social relations and position of the trustee in the society
Trust evaluations (2)

Inputs need to be filtered or adapted for image building to

- ... consider only relevant inputs for the context of an image

 e.g.: if I’m building an image of a medical doctor as a surgeon, I won’t consider her past experiences as a wine recommender

- ... avoid using fake communicated experiences sent by malicious agents

 e.g.: if I detected that an agent sends false communicated experiences about others, I should ignore them

- ... adjust the communicated values if subjective trust computation functions exist

 e.g.: Alice is more severe than Bob and when she communicates a trust value of X, Bob should interpret it as X+2

3 – Trust processes in multiagent systems
Trust evaluation
by a statistical evaluation

Approach: Compute a single value from a set of input

- One example with qualitative values [Abdul-Rahman & Hailes, 00]
 - feedback values in the set {very good, good, bad, very bad}
 - aggregation function consists = keeping the most represented feedback about agent a in a context c
 \[T(a,c,td) \text{ with } td \text{ is defined in} \]
 \{very trustworthy, trustworthy, untrustworthy, very untrustworthy\}

- Another example with numerical values [Schillo et al, 00]
 - Trustor i had n experiences with the trustee j, in which p were positive
 - Aggregation function = a percentage of positive experiences
 \[T^i_j = p/n \]

- A third example is to keep all the experiences in a probability distribution [Sierra & Debenhram, 00]
Trust evaluation
by logical beliefs generation

Approach: Infer a trust evaluation from a set of beliefs

- Example from [Herzig et al, 10], « dispositional trust »:

 \[
 \begin{align*}
 \text{DispTrust}(\text{Alice, Bob, write}(p), \text{written}(p), \text{Done}(\text{request}(ext{Alice, Bob, write}(p)))) & = \\
 \text{PotGoal}_{\text{Alice}}(\text{written}(p), \text{request}(ext{Alice, Bob, write}(p))) \land \\
 \text{Bel}_{\text{Alice}}(\text{G^*}(\text{request}(ext{Alice, Bob, write}(p)) \land \text{Choice}_{\text{Alice}}(\text{written}(p)) \rightarrow \\
 \text{Intends}_{\text{Bob}}(\text{write}(p)) \land \text{Capable}_{\text{Bob}}(\text{write}(p)) \land \text{After}_{\text{Bob:write}(p)}(\text{written}(p)))
 \end{align*}
 \]

Informally: Alice trusts Bob to write a paper p if
- she may have the goal to have a paper p written and,
- she believes that when she has this goal and when she asked Bob to write the paper
 - Bob intends to write the paper
 - Bob is capable of writing the paper
 - After Bob does the action write(p) the paper is written
Trust decision

Trust as an act

• The trust decision process takes into account
 – trust evaluations (images and reputations)
 – the context of the decision
 – the motivations of the trustor

• The trust decision process depends on the representation formalism of trust evaluations
Trust value thresholds

Decision relying on thresholds

- If $\Theta_{\text{trust}} \neq \Theta_{\text{distrust}}$, uncertainty in the decision should be handled.
- The trust thresholds can be directly adjusted:
 - with higher values if the trustor’s motivations are important or the context risky
 - with lower values in opposite cases
Trust decision as a belief

• Example from [Herzig et al, 10], « occurrent trust » :

\[
\text{DispTrust(Alice, Bob, write(p), written(p), Done(request(Alice, Bob, write(p))))} \land \\
\text{Choice}_{\text{Alice}} F \text{written(p)} \land \\
\text{Bel}_{\text{Alice}}(\text{request(Alice, Bob, write(p)))} \\
\text{ -> OccTrust(Alice, Bob, write(p), written(p))}
\]

\textit{Alice trusts here and now Bob to write a paper p in order to achieve the goal of having the paper p written}
Diversity of trust models

A current challenge is to propose solutions for T&R interoperability in 3 situations

Value domain

\[T(John, \text{« good »}) \]

\[T(John, \{(0.3,0.7), (0.4,0.25), (0.7,0.05)\}) \]

Semantics of values

\[T(John, 0.6) \]

\[T(John, 0.6) \]

I’m happy with John

I can do better

Semantics of concepts

\[\text{SharedEvaluation}(John, \text{seller}) = (0.9,1) \]

\[\text{DirectTrust}(John, \text{seller}, -0.4) \]
4 - Reputation in multiagent societies
"After death, a tiger leaves behind his skin, a man his reputation"

Vietnamese proverb
Reputation

“What a social entity says about a target regarding his/her behavior”

- The social evaluation linked to the reputation is not necessarily a belief of the issuer.
- Reputation cannot exist without communication.

Set of individuals plus a set of social relations among these individuals or properties that identify them as a group in front of its own members and the society at large.

It is always associated to a specific behaviour/property
What is reputation good for?

• Reputation is one of the elements that allow us to build trust.

• Reputation has also a social dimension. It is not only useful for the individual but also for the society as a mechanism for social order.
4 - Reputation in multiagent societies

The sources for reputation
4 - Reputation in multiagent societies

• **Communicated Image as a source for reputation**

It consists of aggregating the images that other members in the society communicate, taking this aggregation as the reputation value.

![Diagram showing the concept of communicated image as a source for reputation.]

Assumptions:
• the evaluation is being communicated
• the individuals that share the image are a good sample of what the whole social entity thinks.
• Communicated reputation

It is based on the aggregation of information about reputation received from third parties.

"agent A, B and C say that the reputation of D in the social entity α is good"

Shared Voice

"The reputation of D according to the social entity α is good"

Reputation evaluation

Context dependent:
- Number of communications
- Credibility of informers
- ...

• The level of individual compromise the informant is taking here is quite less than that in the communication of images.
• Inherited reputation

We call inherited reputation the reputation that
(i) is directly inherited from third party agents with whom the subject has some kind of social relation

 Example:
 An employee that works for a certain company inherits the reputation of that company.

 The member of a family inherits the reputation of his/her ancestors.

(ii) is associated to the role the subject is playing in the society.

 Example:
 The director of a research institute that has a good reputation is supposed to have a good reputation as a researcher because of the role she/he is playing in that institution.
4 - Reputation in multiagent societies

• Putting all together

Example: ReGreT

\[
R_{a \rightarrow b}(\phi) = \sum_{i \in \{W,N,S,D\}} \xi_i \cdot R_{a \rightarrow b}(\phi)
\]

\[
\begin{align*}
\xi_W &= RL_{a \rightarrow b}(\phi) \\
\xi_N &= RL_{a \rightarrow b}(\phi) \cdot (1 - \xi_W) \\
\xi_S &= RL_{a \rightarrow b}(\phi) \cdot (1 - \xi_W - \xi_N) \\
\xi_D &= 1 - \xi_W - \xi_N - \xi_S
\end{align*}
\]

* R -> Reputation value
* RL -> Reliability value
* W,N,S,D -> witness, neighborhood, system, default reputation
Centralized vs Decentralized models

- Centralized
 - All the information available in the society can be used.
 - Wrong or biased information has a lesser bad impact on the final value.
 - First comers can benefit from the information from the beginning.
 - The individuals have to trust the central service regarding the impartiality of the calculation.
 - Do not takes into account personal preferences and biases.
 - The central repository is a bottleneck for the system.
 - Security problems.

- Central service

Example: eBay

Copyright © 1995-2012 eBay Inc.
Centralized vs Decentralized models

• Decentralized

- No trust on external central entity is necessary.
- They do not introduce any bottleneck.
- Each agent can decide the method that wants to use to calculate reputation.
- It can take some time for the agent to obtain enough information to calculate a reliable reputation value. It is harder for newcomers.
- It demands more complex and “intelligent” agents.

Example: ReGreT, Travos, FIRE
4 - Reputation in multiagent societies

• Using reputation

Reputation as a source for trust

Reputation is one of the elements that can contribute to build trust on a trustee. Usually it is used when there is a lack of direct information.

Reputation for social order

Reputation incentives “socially acceptable conducts (like benevolence or altruism) and/or forbid socially unacceptable ones”.

Ostracism is the main deterrent used by reputation mechanisms.

Social order -> set of linked social structures, social institutions and social practices which conserve, maintain and enforce “normal” ways of relating and behaving.
Pitfalls when using reputation

Attacks to reputation mechanisms

Compromise between waiting for clearer signals and acting against the attack

Unfair Ratings

Attack: an agent sends deliberately wrong feedback about interactions with another agent.

Solution: to give more weight to the opinions of those agents that in the past have demonstrated to be more certain.

Ballot-Stuffing

Attack: an agent sends more feedback than interactions it has been partner in.

Solution: filtering feedback that comes from peers suspect to be ballot-stuffing and using feedback per interaction rates instead of accumulation of feedback.
• Pitfalls when using reputation

Attacks to reputation mechanisms

Dynamic Personality

Attack: an agent that achieves a high reputation attempts to deceive other agents taking advantage of this high reputation (“value imbalance exploitation”).

Solution: to have a memory window so that not all the past history is taken into account.

Whitewashing

Attack: an agent changes its identifier in order to escape previous bad feedback.

Sybil Attacks

Attack: an agent creates enough identities so it can subvert the normal functioning of the system.
• Pitfalls when using reputation

Attacks to reputation mechanisms

Collusion

Attack: this is not an attack “per se” but an enhancer of other attacks. A group of agents co-operate with one another in order to take advantage of the system and other agents

Solution: difficult to detect. Detect an important and recurrent deviation in the feedbacks of different agents regarding the same targets.

Reputation Lag Exploitation

Attack: the agent uses the lag that the reputation mechanism needs to reflect the new reality (usually a decrease in reputation) and exploits it to get benefit. Then it recovers the previous reputation value and starts again exploiting it.

Solution: (i) to adjust the reaction time of the reputation mechanism so it reacts quickly enough to changes in the behavior. (ii) to give the agent the possibility to detect patterns that show a cyclic behavior in the reputation value.
5 – Trust, reputation & agreement technologies
Connecting T&R with AT

T&R are meant to be used within an agent reasoning process together with other agreement technologies

- Argumentation
- Negotiation
- Norms
- Organization
- Semantics
5 – Trust, reputation & agreement technologies

Argumentation for T/R

Arguments to support/challenge social evaluations
T/R for argumentation

• Trust and reputation used to assess the strength of an argument
 – Reliability of the argument source
 – Confidence in the informative content of the argument

• Impact on the argumentation process
 – Selection of accepted arguments
 – Weighting of arguments
T/R & Negotiation

• The field of trust negotiation is interested in establishing an incremental exchange of trust evidences between two parties (ex: the Keynote system [Blaze et al, 96])

• In a multi-agent negotiation, T&R are useful for local agent decisions
 – for the acceptance of a proposal
 – for selecting partners
T/R & Norms

• A tool for social control of norm obedience
• Scope of norms
 – Individual, group or global
 – May correspond to rules, protocols, contracts, ...
• The satisfaction of a norm can be the context of a T&R evaluation
 – Alice distrusts Bob for respecting his commitments towards her
 – Charles has the reputation of sending answers to any queries as it is defined in the interaction protocols of the society
Multi-agent organizational models provide interesting elements for T&R

• from concepts
 – Reputation in a given *group*
 – Trust in a given *role*

• from infrastructures
 – Repository artefacts to share reputation in a group
T/R & Semantics

Using a common ontology is an approach used to solve the problem of heterogeneity
6 – Conclusions
In summary...

- Trust and reputation have become essential concepts in a multi-agent systems
 - Firstly introduced to implement social control
 - Now vital when dealing with open, heterogeneous multi-agent applications
- Trust models include both a representation formalism and a decisions process
- Reputation is a social evaluation that circulates in a society. It is a source of trust
Current challenges

• There exists now many trust and reputation models
• Current research challenge is now more on their deployment under specific conditions...
 – when an agent have no or multiple identities
 – when human users and software agents interact in mixed virtual communities
 – when privacy issues should be considered when sharing social evaluations
• ... and in their integration in an agent architecture
 – Intertwining T&R with agreement technologies
Selected references
(go to the book chapter for a complete list)