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Mechanism Design and Auctions

Kevin Leyton-Brown & Yoav Shoham

Chapter 7 of Multiagent Systems (MIT Press, 2012)

Drawing on material that first appeared in our own book,
Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations

(Cambridge University Press, 2009)
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Mechanism Design

Goal: pick a way of mapping from agents’ actions to social
choices in a way that will cause rational agents to behave in a
desired way, specifically maximizing the mechanism designer’s
own “utility” or objective function

each agent holds private information, in the Bayesian game
sense
often, we’re interested in settings where agents’ action space is
identical to their type space, and an action can be interpreted
as a declaration of the agent’s type

Various equivalent ways of looking at this setting
perform an optimization problem, given that the values of
(some of) the inputs are unknown
choose the Bayesian game out of a set of possible Bayesian
games that maximizes some performance measure
design a game that implements a particular social choice
function in equilibrium, given that the designer no longer
knows agents’ preferences and the agents might lie
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Bayesian Game Setting

Social choice in a setting where agents can’t be relied upon to
disclose their preferences honestly.

Start with a set of agents in a Bayesian game setting (but no
actions).

Definition (Bayesian game setting)

A Bayesian game setting is a tuple (N,O,Θ, p, u), where

N is a finite set of n agents;

O is a set of outcomes;

Θ = Θ1 × · · · ×Θn is a set of possible joint type vectors;

p is a (common prior) probability distribution on Θ; and

u = (u1, . . . , un), where ui : O ×Θ 7→ R is the utility
function for each player i.
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Mechanism Design

Definition (Mechanism)

A mechanism (for a Bayesian game setting (N,O,Θ, p, u)) is a
pair (A,M), where

A = A1 × · · · ×An, where Ai is the set of actions available to
agent i ∈ N ; and

M : A 7→ Π(O) maps each action profile to a distribution over
outcomes.

Thus, the designer gets to specify

the action sets for the agents (though they may be
constrained by the environment)

the mapping to outcomes, over which agents have utility

can’t change outcomes; agents’ preferences or type spaces
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Implementation in Dominant Strategies

Definition (Implementation in dominant strategies)

Given a Bayesian game setting (N,O,Θ, p, u), a mechanism
(A,M) is an implementation in dominant strategies of a social
choice function C (over N and O) if for any vector of utility
functions u, the game has an equilibrium in dominant strategies,
and in any such equilibrium a∗ we have M(a∗) = C(u).
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Implementation in Bayes-Nash equilibrium

Definition (Bayes–Nash implementation)

Given a Bayesian game setting (N,O,Θ, p, u), a mechanism
(A,M) is an implementation in Bayes–Nash equilibrium of a social
choice function C (over N and O) if there exists a Bayes–Nash
equilibrium of the game of incomplete information (N,A,Θ, p, u)
such that for every θ ∈ Θ and every action profile a ∈ A that can
arise given type profile θ in this equilibrium, we have that
M(a) = C(u(·, θ)).
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Bayes-Nash Implementation Comments

Bayes-Nash Equilibrium Problems:

there could be more than one equilibrium

which one should I expect agents to play?

agents could miscoordinate and play none of the equilibria

asymmetric equilibria are implausible

Refinements:

Symmetric Bayes-Nash implementation

Ex-post implementation
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Implementation Comments

We can require that the desired outcome arises

in the only equilibrium

in every equilibrium

in at least one equilibrium

Forms of implementation:

Direct Implementation: agents each simultaneously send a
single message to the center

Indirect Implementation: agents may send a sequence of
messages; in between, information may be (partially) revealed
about the messages that were sent previously like extensive
form
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It turns out that any social choice function that can be
implemented by any mechanism can be implemented by a
truthful, direct mechanism!

Consider an arbitrary, non-truthful mechanism (e.g., may be
indirect)

Recall that a mechanism defines a game, and consider an
equilibrium s = (s1, . . . , sn)

Kevin Leyton-Brown & Yoav Shoham Mechanism Design and Auctions, Slide 12



Unrestricted Preferences Quasilinearity Efficient Mechs Auctions Position Auctions Combinatorial Auctions

Revelation Principle

Original

Mechanism
M outcome

strategy s
1
(θ

1
)

type θ
1

strategy s
n
(θ

n
)

type θ
n

Original

Mechanism
M outcome

strategy s
1
(θ

1
)

type θ
1

strategy s
n
(θ

n
)

type θ
n

Original

Mechanism
M outcome

strategy s
1
(θ

1
)

type θ
1

strategy s
1
(θ

1
)

type θ
1

strategy s
n
(θ

n
)

type θ
n

strategy s
n
(θ

n
)

type θ
n

It turns out that any social choice function that can be
implemented by any mechanism can be implemented by a
truthful, direct mechanism!

Consider an arbitrary, non-truthful mechanism (e.g., may be
indirect)

Recall that a mechanism defines a game, and consider an
equilibrium s = (s1, . . . , sn)

Kevin Leyton-Brown & Yoav Shoham Mechanism Design and Auctions, Slide 12



Unrestricted Preferences Quasilinearity Efficient Mechs Auctions Position Auctions Combinatorial Auctions

Revelation Principle

Original

Mechanism
M outcome

strategy s
1
(θ

1
)

type θ
1

strategy s
n
(θ

n
)

type θ
n

Original

Mechanism
M outcome

strategy s
1
(θ

1
)

type θ
1

strategy s
n
(θ

n
)

type θ
n

Original

Mechanism
M outcome

strategy s
1
(θ

1
)

type θ
1

strategy s
1
(θ

1
)

type θ
1

strategy s
n
(θ

n
)

type θ
n

strategy s
n
(θ

n
)

type θ
n

It turns out that any social choice function that can be
implemented by any mechanism can be implemented by a
truthful, direct mechanism!

Consider an arbitrary, non-truthful mechanism (e.g., may be
indirect)

Recall that a mechanism defines a game, and consider an
equilibrium s = (s1, . . . , sn)

Kevin Leyton-Brown & Yoav Shoham Mechanism Design and Auctions, Slide 12



Unrestricted Preferences Quasilinearity Efficient Mechs Auctions Position Auctions Combinatorial Auctions

Revelation Principle

(

New Mechanism

Original

Mechanism
M outcome

strategy s′

1
(θ

1
)

type θ
1

strategy s′

n
(θ

n
)

type θ
n

s
1 
(s′

1
(θ

1
))

M

s
n
(s′

n
(θ

n
))

(

New Mechanism

Original

Mechanism
M outcome

strategy s′

1
(θ

1
)

type θ
1

strategy s′

n
(θ

n
)

type θ
n

strategy s′

n
(θ

n
)

type θ
n

s
1 
(s′

1
(θ

1
))

M

s
n
(s′

n
(θ

n
))

We can construct a new direct mechanism, as shown above

This mechanism is truthful by exactly the same argument that
s was an equilibrium in the original mechanism

“The agents don’t have to lie, because the mechanism already
lies for them.”
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Computational Criticism of the Revelation Principle

computation is pushed onto the center
often, agents’ strategies will be computationally expensive

e.g., in the shortest path problem, agents may need to
compute shortest paths, cutsets in the graph, etc.

since the center plays equilibrium strategies for the agents, the
center now incurs this cost

if computation is intractable, so that it cannot be performed
by agents, then in a sense the revelation principle doesn’t hold

agents can’t play the equilibrium strategy in the original
mechanism
however, in this case it’s unclear what the agents will do
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Discussion of the Revelation Principle

The set of equilibria is not always the same in the original
mechanism and revelation mechanism

of course, we’ve shown that the revelation mechanism does
have the original equilibrium of interest
however, in the case of indirect mechanisms, even if the
indirect mechanism had a unique equilibrium, the revelation
mechanism can also have new, bad equilibria

So what is the revelation principle good for?

recognition that truthfulness is not a restrictive assumption
for analysis purposes, we can consider only truthful
mechanisms, and be assured that such a mechanism exists
recognition that indirect mechanisms can’t do (inherently)
better than direct mechanisms
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Impossibility Result

Theorem (Gibbard-Satterthwaite)

Consider any social choice function C of N and O. If:

1 |O| ≥ 3 (there are at least three outcomes);

2 C is onto; that is, for every o ∈ O there is a preference profile
[�] such that C([�]) = o (this property is sometimes also
called citizen sovereignty); and

3 C is dominant-strategy truthful,

then C is dictatorial.
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What does this mean?

We should be discouraged about the possibility of
implementing arbitrary social-choice functions in mechanisms.

However, in practice we can circumvent the
Gibbard-Satterthwaite theorem in two ways:

use a weaker form of implementation

note: the result only holds for dominant strategy
implementation, not e.g., Bayes-Nash implementation

relax the onto condition and the (implicit) assumption that
agents are allowed to hold arbitrary preferences
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Quasilinear Utility

Definition (Quasilinear preferences)

Agents have quasilinear preferences in an n-player Bayesian game
when the set of outcomes is

O = X ×Rn

for a finite set X, and the utility of an agent i given joint type θ is
given by

ui(o, θ) = ui(x, θ)− pi,
where o = (x, p) is an element of O, ui : X ×Θ 7→ R is an
arbitrary function.
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Quasilinear utility

ui(o, θ) = ui(x, θ)− pi
We split the mechanism into a choice rule and a payment
rule:

x ∈ X is a discrete, non-monetary outcome
pi ∈ R is a monetary payment (possibly negative) that agent i
must make to the mechanism

Implications:

ui(x, θ) is not influenced by the amount of money an agent has
agents don’t care how much others are made to pay (though
they can care about how the choice affects others.)
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Quasilinear Mechanism

Definition (Quasilinear mechanism)

A mechanism in the quasilinear setting (for a Bayesian game
setting (N,O = X ×Rn,Θ, p, u)) is a triple (A, x , p), where

A = A1 × · · · ×An, where Ai is the set of actions available to
agent i ∈ N ,

x : A 7→ Π(X) maps each action profile to a distribution over
choices, and

p : A 7→ Rn maps each action profile to a payment for each
agent.
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Direct Quasilinear Mechanism

Definition (Direct quasilinear mechanism)

A direct quasilinear mechanism (for a Bayesian game setting
(N,O = X ×Rn,Θ, p, u)) is a pair (x , p). It defines a standard
mechanism in the quasilinear setting, where for each i, Ai = Θi.

Definition (Conditional utility independence)

A Bayesian game exhibits conditional utility independence if for all
agents i ∈ N , for all outcomes o ∈ O and for all pairs of joint types
θ and θ′ ∈ Θ for which θi = θ′i, it holds that ui(o, θ) = ui(o, θ

′).
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Quasilinear Mechanisms with Conditional Utility
Independence

Given conditional utility independence, we can write i’s utility
function as ui(o, θi)

it does not depend on the other agents’ types

An agent’s valuation for choice x ∈ X: vi(x) = ui(x, θi)

the maximum amount i would be willing to pay to get x
in fact, i would be indifferent between keeping the money and
getting x

Alternate definition of direct mechanism:

ask agents i to declare vi(x) for each x ∈ X
Define v̂i as the valuation that agent i declares to such a
direct mechanism

may be different from his true valuation vi

Also define the tuples v̂, v̂−i
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Truthfulness

Definition (Truthfulness)

A quasilinear mechanism is truthful if it is direct and ∀i∀vi, agent
i’s equilibrium strategy is to adopt the strategy v̂i = vi.

Our definition before, adapted for the quasilinear setting
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Efficiency

Definition (Efficiency)

A quasilinear mechanism is strictly Pareto efficient, or just
efficient, if in equilibrium it selects a choice x such that

∀v∀x′,
∑
i

vi(x) ≥
∑
i

vi(x
′).

An efficient mechanism selects the choice that maximizes the
sum of agents’ utilities, disregarding monetary payments.
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Efficiency

Definition (Efficiency)

A quasilinear mechanism is strictly Pareto efficient, or just
efficient, if in equilibrium it selects a choice x such that

∀v∀x′,
∑
i

vi(x) ≥
∑
i

vi(x
′).

Called economic efficiency to distinguish from other (e.g.,
computational) notions

Also called social-welfare maximization

Note: defined in terms of true (not declared) valuations.
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Budget Balance

Definition (Budget balance)

A quasilinear mechanism is budget balanced when

∀v,
∑
i

pi(s(v)) = 0,

where s is the equilibrium strategy profile.

regardless of the agents’ types, the mechanism collects and
disburses the same amount of money from and to the agents
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Budget Balance

Definition (Budget balance)

A quasilinear mechanism is budget balanced when

∀v,
∑
i

pi(s(v)) = 0,

where s is the equilibrium strategy profile.

regardless of the agents’ types, the mechanism collects and
disburses the same amount of money from and to the agents

relaxed version: weak budget balance:

∀v,
∑
i

pi(s(v)) ≥ 0

the mechanism never takes a loss, but it may make a profit
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Budget Balance

Definition (Budget balance)

A quasilinear mechanism is budget balanced when

∀v,
∑
i

pi(s(v)) = 0,

where s is the equilibrium strategy profile.

regardless of the agents’ types, the mechanism collects and
disburses the same amount of money from and to the agents

Budget balance can be required to hold ex ante:

Ev
∑
i

pi(s(v)) = 0

the mechanism must break even or make a profit only on
expectation
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Individual Rationality

Definition (Ex interim individual rationality)

A mechanism is ex interim individual rational when
∀i∀vi, Ev−i|vivi(x (si(vi), s−i(v−i)))− pi(si(vi), s−i(v−i)) ≥ 0,
where s is the equilibrium strategy profile.

no agent loses by participating in the mechanism.

ex interim because it holds for every possible valuation for
agent i, but averages over the possible valuations of the other
agents.

Definition (Ex post individual rationality)

A mechanism is ex post individual rational when
∀i∀v, vi(x (s(v)))− pi(s(v)) ≥ 0, where s is the equilibrium
strategy profile.
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Tractability

Definition (Tractability)

A mechanism is tractable when ∀v̂, x (v̂) and p(v̂) can be
computed in polynomial time.

The mechanism is computationally feasible.
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Revenue Maximization

We can also add an objective function to our mechanism. One
example: revenue maximization.

Definition (Revenue maximization)

A mechanism is revenue maximizing when, among the set of
functions x and p that satisfy the other constraints, the
mechanism selects the x and p that maximize Eθ

∑
i pi(s(θ)),

where s(θ) denotes the agents’ equilibrium strategy profile.

The mechanism designer can choose among mechanisms that
satisfy the desired constraints by adding an objective function
such as revenue maximization.
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Revenue Minimization

The mechanism may not be intended to make money.

Budget balance may be impossible to satisfy.

Set weak budget balance as a constraint and add the
following objective.

Definition (Revenue minimization)

A quasilinear mechanism is revenue minimizing when, among the
set of functions x and p that satisfy the other constraints, the
mechanism selects the x and p that minimize maxv

∑
i pi(s(v)) in

equilibrium, where s(v) denotes the agents’ equilibrium strategy
profile.

Note: this considers the worst case over valuations; we could
consider average case instead.
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Fairness

Fairness is hard to define. What is fairer:
an outcome that fines all agents $100 and makes a choice that
all agents hate equally?
an outcome that charges all agents $0 and makes a choice that
some agents hate and some agents like?

Maxmin fairness: make the least-happy agent the happiest.

Definition (Maxmin fairness)

A quasilinear mechanism is maxmin fair when, among the set of
functions x and p that satisfy the other constraints, the
mechanism selects the x and p that maximize

Ev
[
min
i∈N

vi(x (s(v)))− pi(s(v))

]
,

where s(v) denotes the agents’ equilibrium strategy profile.
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Price of Anarchy Minimization

When an efficient mechanism is impossible, we may want to get as
close as possible

Minimize the worst-case ratio between optimal social welfare and
the social welfare achieved by the given mechanism.

Definition (Price-of-anarchy minimization)

A quasilinear mechanism minimizes the price of anarchy when, among
the set of functions x and p that satisfy the other constraints, the
mechanism selects the x and p that minimize

max
v∈V

maxx∈X
∑

i∈N vi(x)∑
i∈N vi (x (s(v)))

,

where s(v) denotes the agents’ equilibrium strategy profile in the worst
equilibrium of the mechanism—i.e., the one in which

∑
i∈N vi(x (s(v)))

is the smallest.
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A positive result

Recall that in the quasilinear utility setting, a mechanism can
be defined as a choice rule and a payment rule.

The Groves mechanism is a mechanism that satisfies:

dominant strategy (truthfulness)
efficiency

In general it’s not:

budget balanced
individual-rational

...though we’ll see later that there’s some hope for recovering
these properties.
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The Groves Mechanism

Definition (Groves mechanism)

The Groves mechanism is a direct quasilinear mechanism (x , p),
where

x (v̂) = arg max
x

∑
i

v̂i(x)

pi(v̂) = hi(v̂−i)−
∑
j 6=i

v̂j(x (v̂))
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The Groves Mechanism

x (v̂) = arg max
x

∑
i

v̂i(x)

pi(v̂) = hi(v̂−i)−
∑
j 6=i

v̂j(x (v̂))

The choice rule should not come as a surprise (why not?)

because the mechanism is both truthful and efficient: these
properties entail the given choice rule.

So what’s going on with the payment rule?

the agent i must pay some amount hi(v̂−i) that doesn’t
depend on his own declared valuation
the agent i is paid

∑
j 6=i v̂j(x (v̂)), the sum of the others’

valuations for the chosen outcome
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Groves Truthfulness

Theorem
Truth telling is a dominant strategy under the Groves mechanism.

Consider a situation where every agent j other than i follows some arbitrary
strategy v̂j . Consider agent i’s problem of choosing the best strategy v̂i. As a
shorthand, we will write v̂ = (v̂−i, v̂i). The best strategy for i is one that solves

max
v̂i

(
vi(x (v̂))− p(v̂)

)
Substituting in the payment function from the Groves mechanism, we have

max
v̂i

vi(x (v̂))− hi(v̂−i) +
∑
j 6=i

v̂j(x (v̂))


Since hi(v̂−i) does not depend on v̂i, it is sufficient to solve

max
v̂i

vi(x (v̂)) +
∑
j 6=i

v̂j(x (v̂))

 .

Kevin Leyton-Brown & Yoav Shoham Mechanism Design and Auctions, Slide 40



Unrestricted Preferences Quasilinearity Efficient Mechs Auctions Position Auctions Combinatorial Auctions

Groves Truthfulness

max
v̂i

vi(x (v̂)) +
∑
j 6=i

v̂j(x (v̂))

 .

The only way the declaration v̂i influences this maximization is through the
choice of x. If possible, i would like to pick a declaration v̂i that will lead the
mechanism to pick an x ∈ X which solves

max
x

vi(x) +
∑
j 6=i

v̂j(x)

 . (1)

Under the Groves mechanism,

x (v̂) = argmax
x

(∑
i

v̂i(x)

)
= argmax

x

v̂i(x) +
∑
j 6=i

v̂j(x)

 .

The Groves mechanism will choose x in a way that solves the maximization

problem in Equation (1) when i declares v̂i = vi. Because this argument does

not depend in any way on the declarations of the other agents, truth-telling is a

dominant strategy for agent i.
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Proof intuition

externalities are internalized

agents may be able to change the outcome to another one
that they prefer, by changing their declaration
however, their utility doesn’t just depend on the outcome—it
also depends on their payment
since they get paid the (reported) utility of all the other agents
under the chosen allocation, they now have an interest in
maximizing everyone’s utility rather than just their own

in general, DS truthful mechanisms have the property that an
agent’s payment doesn’t depend on the amount of his
declaration, but only on the other agents’ declarations

the agent’s declaration is used only to choose the outcome,
and to set other agents’ payments
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Groves Uniqueness

Theorem (Green–Laffont)

An efficient social choice function C : RXn → X ×Rn can be
implemented in dominant strategies for agents with unrestricted
quasilinear utilities only if pi(v) = h(v−i)−

∑
j 6=i vj(x (v)).

it turns out that the same result also holds for the broader
class of Bayes–Nash incentive-compatible efficient
mechanisms.
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VCG

Definition (Clarke tax)

The Clarke tax sets the hi term in a Groves mechanism as

hi(v̂−i) =
∑
j 6=i

v̂j (x (v̂−i)) .

Definition (Vickrey-Clarke-Groves (VCG) mechanism)

The Vickrey-Clarke-Groves mechanism is a direct quasilinear
mechanism (x , p), where

x (v̂) = arg max
x

∑
i

v̂i(x)

pi(v̂) =
∑
j 6=i

v̂j (x (v̂−i))−
∑
j 6=i

v̂j(x (v̂))
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VCG discussion

x (v̂) = arg max
x

∑
i

v̂i(x)

pi(v̂) =
∑
j 6=i

v̂j (x (v̂−i))−
∑
j 6=i

v̂j(x (v̂))

You get paid everyone’s utility under the allocation that is
actually chosen

except your own, but you get that directly as utility

Then you get charged everyone’s utility in the world where
you don’t participate

Thus you pay your social cost
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VCG discussion

x (v̂) = arg max
x

∑
i

v̂i(x)

pi(v̂) =
∑
j 6=i

v̂j (x (v̂−i))−
∑
j 6=i

v̂j(x (v̂))

Questions:

who pays 0?

agents who don’t affect the outcome

who pays more than 0?

(pivotal) agents who make things worse for others by existing

who gets paid?

(pivotal) agents who make things better for others by existing
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VCG properties

x (v̂) = arg max
x

∑
i

v̂i(x)

pi(v̂) =
∑
j 6=i

v̂j (x (v̂−i))−
∑
j 6=i

v̂j(x (v̂))

Because only pivotal agents have to pay, VCG is also called
the pivot mechanism

It’s dominant-strategy truthful, because it’s a Groves
mechanism
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Selfish routing example

212 8 Protocols for Strategic Agents: Mechanism Design

First, note that because the Clarke tax does not depend on an agenti’s own declara-
tion v̂i, our previous arguments that Groves mechanisms are dominant strategy truthful
and efficient transfer immediately to the VCG mechanism. Now, we’ll try to provide
some intuition about the VCG payment rule. Assume that all agents follow their dom-
inant strategies and declare their valuations truthfully.The second sum in the VCG
payment rule pays each agenti the sum of every other agentj 6= i’s utility for the
mechanism’s choice. The first sum charges each agenti the sum of every other agent’s
utility for the choice thatwould have been madehadi not participated in the mecha-
nism. Thus, each agent is made to pay hissocial cost—the aggregate impact that his
participation has on other agents’ utilities.

What can we say about the amounts of different agents’ payments to the mechanism?
If some agenti does not change the mechanism’s choice by his participation—that is,
if x (v) = x (v−i)—then the two sums in the VCG payment function will cancel out.
The social cost ofi’s participation is zero, and so he has to pay nothing. In order for
an agenti to be made to pay a nonzero amount, he must bepivotal in the sense that
the mechanism’s choicex (v) is different from its choice withouti, x (v−i). This is
why VCG is sometimes called the pivot mechanism—only pivotalagents are made to
pay. Of course, it’s possible that some agents willimproveother agents’ utility by
participating; such agents will be made to pay a negative amount, or in other words
will be paid by the mechanism.

Let’s see an example of how the VCG mechanism works. Recall that Section 8.1.2
discussed the problem of selfish routing in a transportationnetwork. We’ll now recon-
sider that example, and determine what route and what payments the VCG mechanism
would select. For convenience, we reproduce Figure 8.1 as Figure 8.4, and label the
nodes so that we have names to refer to the agents (the edges).
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Figure 8.4 Transportation network with selfish agents.

c©Shoham and Leyton-Brown, 2006

What outcome will be selected by x ?

path ABEF .
How much will AC have to pay?

The shortest path taking his declaration into account has a
length of 5, and imposes a cost of −5 on agents other than
him (because it does not involve him). Likewise, the shortest
path without AC’s declaration also has a length of 5. Thus,
his payment pAC = (−5)− (−5) = 0.
This is what we expect, since AC is not pivotal.
Likewise, BD, CE, CF and DF will all pay zero.
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c©Shoham and Leyton-Brown, 2006
How much will AB pay?

The shortest path taking AB’s declaration into account has a
length of 5, and imposes a cost of 2 on other agents.
The shortest path without AB is ACEF , which has a cost of
6.
Thus pAB = (−6)− (−2) = −4.

Kevin Leyton-Brown & Yoav Shoham Mechanism Design and Auctions, Slide 50



Unrestricted Preferences Quasilinearity Efficient Mechs Auctions Position Auctions Combinatorial Auctions

Selfish routing example

212 8 Protocols for Strategic Agents: Mechanism Design

First, note that because the Clarke tax does not depend on an agenti’s own declara-
tion v̂i, our previous arguments that Groves mechanisms are dominant strategy truthful
and efficient transfer immediately to the VCG mechanism. Now, we’ll try to provide
some intuition about the VCG payment rule. Assume that all agents follow their dom-
inant strategies and declare their valuations truthfully.The second sum in the VCG
payment rule pays each agenti the sum of every other agentj 6= i’s utility for the
mechanism’s choice. The first sum charges each agenti the sum of every other agent’s
utility for the choice thatwould have been madehadi not participated in the mecha-
nism. Thus, each agent is made to pay hissocial cost—the aggregate impact that his
participation has on other agents’ utilities.

What can we say about the amounts of different agents’ payments to the mechanism?
If some agenti does not change the mechanism’s choice by his participation—that is,
if x (v) = x (v−i)—then the two sums in the VCG payment function will cancel out.
The social cost ofi’s participation is zero, and so he has to pay nothing. In order for
an agenti to be made to pay a nonzero amount, he must bepivotal in the sense that
the mechanism’s choicex (v) is different from its choice withouti, x (v−i). This is
why VCG is sometimes called the pivot mechanism—only pivotalagents are made to
pay. Of course, it’s possible that some agents willimproveother agents’ utility by
participating; such agents will be made to pay a negative amount, or in other words
will be paid by the mechanism.

Let’s see an example of how the VCG mechanism works. Recall that Section 8.1.2
discussed the problem of selfish routing in a transportationnetwork. We’ll now recon-
sider that example, and determine what route and what payments the VCG mechanism
would select. For convenience, we reproduce Figure 8.1 as Figure 8.4, and label the
nodes so that we have names to refer to the agents (the edges).
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tion v̂i, our previous arguments that Groves mechanisms are dominant strategy truthful
and efficient transfer immediately to the VCG mechanism. Now, we’ll try to provide
some intuition about the VCG payment rule. Assume that all agents follow their dom-
inant strategies and declare their valuations truthfully.The second sum in the VCG
payment rule pays each agenti the sum of every other agentj 6= i’s utility for the
mechanism’s choice. The first sum charges each agenti the sum of every other agent’s
utility for the choice thatwould have been madehadi not participated in the mecha-
nism. Thus, each agent is made to pay hissocial cost—the aggregate impact that his
participation has on other agents’ utilities.

What can we say about the amounts of different agents’ payments to the mechanism?
If some agenti does not change the mechanism’s choice by his participation—that is,
if x (v) = x (v−i)—then the two sums in the VCG payment function will cancel out.
The social cost ofi’s participation is zero, and so he has to pay nothing. In order for
an agenti to be made to pay a nonzero amount, he must bepivotal in the sense that
the mechanism’s choicex (v) is different from its choice withouti, x (v−i). This is
why VCG is sometimes called the pivot mechanism—only pivotalagents are made to
pay. Of course, it’s possible that some agents willimproveother agents’ utility by
participating; such agents will be made to pay a negative amount, or in other words
will be paid by the mechanism.

Let’s see an example of how the VCG mechanism works. Recall that Section 8.1.2
discussed the problem of selfish routing in a transportationnetwork. We’ll now recon-
sider that example, and determine what route and what payments the VCG mechanism
would select. For convenience, we reproduce Figure 8.1 as Figure 8.4, and label the
nodes so that we have names to refer to the agents (the edges).
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c©Shoham and Leyton-Brown, 2006How much will BE pay?

pBE = (−6)− (−4) = −2.

How much will EF pay? pEF = (−7)− (−4) = −3.

EF and BE have the same costs but are paid different
amounts. Why?
EF has more market power: for the other agents, the
situation without EF is worse than the situation without BE.
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nism. Thus, each agent is made to pay hissocial cost—the aggregate impact that his
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What can we say about the amounts of different agents’ payments to the mechanism?
If some agenti does not change the mechanism’s choice by his participation—that is,
if x (v) = x (v−i)—then the two sums in the VCG payment function will cancel out.
The social cost ofi’s participation is zero, and so he has to pay nothing. In order for
an agenti to be made to pay a nonzero amount, he must bepivotal in the sense that
the mechanism’s choicex (v) is different from its choice withouti, x (v−i). This is
why VCG is sometimes called the pivot mechanism—only pivotalagents are made to
pay. Of course, it’s possible that some agents willimproveother agents’ utility by
participating; such agents will be made to pay a negative amount, or in other words
will be paid by the mechanism.

Let’s see an example of how the VCG mechanism works. Recall that Section 8.1.2
discussed the problem of selfish routing in a transportationnetwork. We’ll now recon-
sider that example, and determine what route and what payments the VCG mechanism
would select. For convenience, we reproduce Figure 8.1 as Figure 8.4, and label the
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tion v̂i, our previous arguments that Groves mechanisms are dominant strategy truthful
and efficient transfer immediately to the VCG mechanism. Now, we’ll try to provide
some intuition about the VCG payment rule. Assume that all agents follow their dom-
inant strategies and declare their valuations truthfully.The second sum in the VCG
payment rule pays each agenti the sum of every other agentj 6= i’s utility for the
mechanism’s choice. The first sum charges each agenti the sum of every other agent’s
utility for the choice thatwould have been madehadi not participated in the mecha-
nism. Thus, each agent is made to pay hissocial cost—the aggregate impact that his
participation has on other agents’ utilities.

What can we say about the amounts of different agents’ payments to the mechanism?
If some agenti does not change the mechanism’s choice by his participation—that is,
if x (v) = x (v−i)—then the two sums in the VCG payment function will cancel out.
The social cost ofi’s participation is zero, and so he has to pay nothing. In order for
an agenti to be made to pay a nonzero amount, he must bepivotal in the sense that
the mechanism’s choicex (v) is different from its choice withouti, x (v−i). This is
why VCG is sometimes called the pivot mechanism—only pivotalagents are made to
pay. Of course, it’s possible that some agents willimproveother agents’ utility by
participating; such agents will be made to pay a negative amount, or in other words
will be paid by the mechanism.

Let’s see an example of how the VCG mechanism works. Recall that Section 8.1.2
discussed the problem of selfish routing in a transportationnetwork. We’ll now recon-
sider that example, and determine what route and what payments the VCG mechanism
would select. For convenience, we reproduce Figure 8.1 as Figure 8.4, and label the
nodes so that we have names to refer to the agents (the edges).
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First, note that because the Clarke tax does not depend on an agenti’s own declara-
tion v̂i, our previous arguments that Groves mechanisms are dominant strategy truthful
and efficient transfer immediately to the VCG mechanism. Now, we’ll try to provide
some intuition about the VCG payment rule. Assume that all agents follow their dom-
inant strategies and declare their valuations truthfully.The second sum in the VCG
payment rule pays each agenti the sum of every other agentj 6= i’s utility for the
mechanism’s choice. The first sum charges each agenti the sum of every other agent’s
utility for the choice thatwould have been madehadi not participated in the mecha-
nism. Thus, each agent is made to pay hissocial cost—the aggregate impact that his
participation has on other agents’ utilities.

What can we say about the amounts of different agents’ payments to the mechanism?
If some agenti does not change the mechanism’s choice by his participation—that is,
if x (v) = x (v−i)—then the two sums in the VCG payment function will cancel out.
The social cost ofi’s participation is zero, and so he has to pay nothing. In order for
an agenti to be made to pay a nonzero amount, he must bepivotal in the sense that
the mechanism’s choicex (v) is different from its choice withouti, x (v−i). This is
why VCG is sometimes called the pivot mechanism—only pivotalagents are made to
pay. Of course, it’s possible that some agents willimproveother agents’ utility by
participating; such agents will be made to pay a negative amount, or in other words
will be paid by the mechanism.

Let’s see an example of how the VCG mechanism works. Recall that Section 8.1.2
discussed the problem of selfish routing in a transportationnetwork. We’ll now recon-
sider that example, and determine what route and what payments the VCG mechanism
would select. For convenience, we reproduce Figure 8.1 as Figure 8.4, and label the
nodes so that we have names to refer to the agents (the edges).

n n

n n

n n
3

2

3

2

1

5

2

1

A F

C E

B D

�
�
�
��

@
@
@
@R

-

@
@
@
@
@
@
@
@
@@R

1

-

@
@
@
@R

�
�
�
��

Figure 8.4 Transportation network with selfish agents.

c©Shoham and Leyton-Brown, 2006How much will BE pay? pBE = (−6)− (−4) = −2.

How much will EF pay? pEF = (−7)− (−4) = −3.

EF and BE have the same costs but are paid different
amounts. Why?
EF has more market power: for the other agents, the
situation without EF is worse than the situation without BE.

Kevin Leyton-Brown & Yoav Shoham Mechanism Design and Auctions, Slide 51



Unrestricted Preferences Quasilinearity Efficient Mechs Auctions Position Auctions Combinatorial Auctions

Selfish routing example

212 8 Protocols for Strategic Agents: Mechanism Design

First, note that because the Clarke tax does not depend on an agenti’s own declara-
tion v̂i, our previous arguments that Groves mechanisms are dominant strategy truthful
and efficient transfer immediately to the VCG mechanism. Now, we’ll try to provide
some intuition about the VCG payment rule. Assume that all agents follow their dom-
inant strategies and declare their valuations truthfully.The second sum in the VCG
payment rule pays each agenti the sum of every other agentj 6= i’s utility for the
mechanism’s choice. The first sum charges each agenti the sum of every other agent’s
utility for the choice thatwould have been madehadi not participated in the mecha-
nism. Thus, each agent is made to pay hissocial cost—the aggregate impact that his
participation has on other agents’ utilities.

What can we say about the amounts of different agents’ payments to the mechanism?
If some agenti does not change the mechanism’s choice by his participation—that is,
if x (v) = x (v−i)—then the two sums in the VCG payment function will cancel out.
The social cost ofi’s participation is zero, and so he has to pay nothing. In order for
an agenti to be made to pay a nonzero amount, he must bepivotal in the sense that
the mechanism’s choicex (v) is different from its choice withouti, x (v−i). This is
why VCG is sometimes called the pivot mechanism—only pivotalagents are made to
pay. Of course, it’s possible that some agents willimproveother agents’ utility by
participating; such agents will be made to pay a negative amount, or in other words
will be paid by the mechanism.

Let’s see an example of how the VCG mechanism works. Recall that Section 8.1.2
discussed the problem of selfish routing in a transportationnetwork. We’ll now recon-
sider that example, and determine what route and what payments the VCG mechanism
would select. For convenience, we reproduce Figure 8.1 as Figure 8.4, and label the
nodes so that we have names to refer to the agents (the edges).
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tion v̂i, our previous arguments that Groves mechanisms are dominant strategy truthful
and efficient transfer immediately to the VCG mechanism. Now, we’ll try to provide
some intuition about the VCG payment rule. Assume that all agents follow their dom-
inant strategies and declare their valuations truthfully.The second sum in the VCG
payment rule pays each agenti the sum of every other agentj 6= i’s utility for the
mechanism’s choice. The first sum charges each agenti the sum of every other agent’s
utility for the choice thatwould have been madehadi not participated in the mecha-
nism. Thus, each agent is made to pay hissocial cost—the aggregate impact that his
participation has on other agents’ utilities.

What can we say about the amounts of different agents’ payments to the mechanism?
If some agenti does not change the mechanism’s choice by his participation—that is,
if x (v) = x (v−i)—then the two sums in the VCG payment function will cancel out.
The social cost ofi’s participation is zero, and so he has to pay nothing. In order for
an agenti to be made to pay a nonzero amount, he must bepivotal in the sense that
the mechanism’s choicex (v) is different from its choice withouti, x (v−i). This is
why VCG is sometimes called the pivot mechanism—only pivotalagents are made to
pay. Of course, it’s possible that some agents willimproveother agents’ utility by
participating; such agents will be made to pay a negative amount, or in other words
will be paid by the mechanism.

Let’s see an example of how the VCG mechanism works. Recall that Section 8.1.2
discussed the problem of selfish routing in a transportationnetwork. We’ll now recon-
sider that example, and determine what route and what payments the VCG mechanism
would select. For convenience, we reproduce Figure 8.1 as Figure 8.4, and label the
nodes so that we have names to refer to the agents (the edges).
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How much will EF pay? pEF = (−7)− (−4) = −3.

EF and BE have the same costs but are paid different
amounts. Why?
EF has more market power: for the other agents, the
situation without EF is worse than the situation without BE.
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VCG and Individual Rationality

Definition (Choice-set monotonicity)

An environment exhibits choice-set monotonicity if ∀i, X−i ⊆ X.

removing any agent weakly decreases—that is, never
increases—the mechanism’s set of possible choices X

Definition (No negative externalities)

An environment exhibits no negative externalities if
∀i∀x ∈ X−i, vi(x) ≥ 0.

every agent has zero or positive utility for any choice that can
be made without his participation

Theorem

The VCG mechanism is ex-post individual rational when the choice
set monotonicity and no negative externalities properties hold.
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Example: road referendum

Example

Consider the problem of holding a referendum to decide whether or
not to build a road.

The set of choices is independent of the number of agents,
satisfying choice-set monotonicity.

No agent negatively values the project, though some might
value the situation in which the project is not undertaken
more highly than the situation in which it is.
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Example: simple exchange

Example

Consider a market setting consisting of agents interested in buying
a single unit of a good such as a share of stock, and another set of
agents interested in selling a single unit of this good. The choices
in this environment are sets of buyer-seller pairings (prices are
imposed through the payment function).

If a new agent is introduced into the market, no
previously-existing pairings become infeasible, but new ones
become possible; thus choice-set monotonicity is satisfied.

Because agents have zero utility both for choices that involve
trades between other agents and no trades at all, there are no
negative externalities.
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VCG and weak budget balance

Definition (No single-agent effect)

An environment exhibits no single-agent effect if ∀i, ∀v−i,
∀x ∈ arg maxy

∑
j vj(y) there exists a choice x′ that is feasible

without i and that has
∑

j 6=i vj(x
′) ≥∑j 6=i vj(x).

Example

Consider a single-sided auction. Dropping an agent just reduces
the amount of competition, making the others better off.

Theorem

The VCG mechanism is weakly budget-balanced when the no
single-agent effect property holds.
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Drawbacks of VCG

1 Agents must fully disclose private information.

2 VCG is susceptible to collusion.

3 VCG is not “frugal”: prices can be many times higher than the
true value of the best allocation involving no winning agents.

4 Excluding bidders can (unboundedly) increase revenue.

5 It is impossible to return all of VCG’s revenue to the agents
without distorting incentives.

6 The problem of identifying the argmax can be computationally
intractable.
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Budget Balance and Efficiency

Theorem (Green–Laffont; Hurwicz)

No dominant-strategy incentive-compatible mechanism is always
both efficient and weakly budget balanced, even if agents are
restricted to the simple exchange setting.

Theorem (Myerson–Satterthwaite)

No Bayes-Nash incentive-compatible mechanism is always
simultaneously efficient, weakly budget balanced and ex-interim
individual rational, even if agents are restricted to quasilinear
utility functions.
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Motivation

Auctions are any mechanisms for allocating resources among
self-interested agents

Very widely used

government sale of resources
privatization
stock market
request for quote
FCC spectrum
real estate sales
eBay
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CS Motivation

resource allocation is a fundamental problem in CS

increasing importance of studying distributed systems with
heterogeneous agents

markets for:

computational resources (JINI, etc.)
P2P systems
network bandwidth

currency needn’t be real money, just something scarce

that said, real money trading agents are also an important
motivation
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Some Canonical Auctions

English

Japanese

Dutch

Sealed Bid
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English Auction

English Auction

auctioneer starts the bidding at some “reservation price”

bidders then shout out ascending prices

once bidders stop shouting, the high bidder gets the good at
that price
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Japanese Auction

Japanese Auction

Same as an English auction except that the auctioneer calls
out the prices

all bidders start out standing

when the price reaches a level that a bidder is not willing to
pay, that bidder sits down

once a bidder sits down, they can’t get back up

the last person standing gets the good

analytically more tractable than English because jump bidding
can’t occur

consider the branching factor of the extensive form game...
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Dutch Auction

Dutch Auction

the auctioneer starts a clock at some high value; it descends

at some point, a bidder shouts “mine!” and gets the good at
the price shown on the clock
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Sealed-Bid Auctions

First-Price Auction

bidders write down bids on pieces of paper

auctioneer awards the good to the bidder with the highest bid

that bidder pays the amount of his bid

Second-Price Auction

bidders write down bids on pieces of paper

auctioneer awards the good to the bidder with the highest bid

that bidder pays the amount bid by the second-highest bidder

Kevin Leyton-Brown & Yoav Shoham Mechanism Design and Auctions, Slide 67



Unrestricted Preferences Quasilinearity Efficient Mechs Auctions Position Auctions Combinatorial Auctions

Overview
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Modeling an auction as a Bayesian mechanism

The possible outcomes O consist of all possible ways of
allocating the good—the set of choices X—and of charging
the agents.

The agents’ action sets vary in different auction types.

In a sealed-bid auction, each set Ai is an interval from R: the
declaration of a bid amount between some minimum and
maximum value.
A Japanese auction is an imperfect-information extensive-form
game with chance nodes, and so Ai is the space of all policies
i could follow.

x and p depend on the objective of the auction, such as
achieving an efficient allocation or maximizing revenue.

common prior: agent’s valuations are drawn independently
from a known distribution (“independent private values”
model)

Kevin Leyton-Brown & Yoav Shoham Mechanism Design and Auctions, Slide 69



Unrestricted Preferences Quasilinearity Efficient Mechs Auctions Position Auctions Combinatorial Auctions

Overview

1 Mechanism Design with Unrestricted Preferences

2 Quasilinear Preferences

3 Efficient Mechanisms

4 Single-Good Auctions
Canonical auction families
Auctions as Bayesian mechanisms
Second-price auctions
First-price auctions
Revenue equivalence

5 Position Auctions

6 Combinatorial Auctions
Kevin Leyton-Brown & Yoav Shoham Mechanism Design and Auctions, Slide 70



Unrestricted Preferences Quasilinearity Efficient Mechs Auctions Position Auctions Combinatorial Auctions

Second-Price

Theorem

Truth-telling is a dominant strategy in a second-price auction.

In fact, we know this already (do you see why?)

However, we’ll look at a simpler, direct proof.
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Second-Price proof

Theorem

Truth-telling is a dominant strategy in a second-price auction.

Proof.

Assume that the other bidders bid in some arbitrary way. We must
show that i’s best response is always to bid truthfully. We’ll break
the proof into two cases:

1 Bidding honestly, i would win the auction

2 Bidding honestly, i would lose the auction
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Second-Price proof (2)

next-highest
bidi’s bid

i pays

i’s true
value

next-highest
bidi’s bid

i pays

i’s true
value

next-highest
bidi’s bid

i pays

i’s true
value

highest
bidi’s bid

winner
pays

i’s true
value

Bidding honestly, i is the winner

If i bids higher, he will still win and still pay the same amount

If i bids lower, he will either still win and still pay the same
amount. . .

or lose and get utility of zero.
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Second-Price proof (3)

highest
bidi’s bid

i’s true
value

highest
bidi’s bid

i’s true
value

highest
bidi’s bid

i’s true
value

next-highest
bidi’s bid

i pays

i’s true
value

Bidding honestly, i is not the winner

If i bids lower, he will still lose and still pay nothing

If i bids higher, he will either still lose and still pay
nothing. . .

or win and pay more than his valuation.
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English and Japanese auctions

A much more complicated strategy space

extensive form game
bidders are able to condition their bids on information revealed
by others
in the case of English auctions, the ability to place jump bids

intuitively, though, the revealed information doesn’t make any
difference in the IPV setting.

Theorem

Under the independent private values model (IPV), it is a
dominant strategy for bidders to bid up to (and not beyond) their
valuations in both Japanese and English auctions.
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First-Price and Dutch

Theorem

First-Price and Dutch auctions are strategically equivalent.

In both first-price and Dutch, a bidder must decide on the
amount he’s willing to pay, conditional on having placed the
highest bid.

despite the fact that Dutch auctions are extensive-form games,
the only thing a winning bidder knows about the others is that
all of them have decided on lower bids

e.g., he does not know what these bids are
this is exactly the thing that a bidder in a first-price auction
assumes when placing his bid anyway.

Note that this is a stronger result than the connection
between second-price and English.
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Discussion

So, why are both auction types held in practice?

First-price auctions can be held asynchronously
Dutch auctions are fast, and require minimal communication:
only one bit needs to be transmitted from the bidders to the
auctioneer.

How should bidders bid in these auctions?

They should clearly bid less than their valuations.
There’s a tradeoff between:

probability of winning
amount paid upon winning

Bidders don’t have a dominant strategy anymore.
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Equilibrium

First-price auctions are not incentive compatible

hence, unsurprisingly, not equivalent to second-price auctions

Theorem

In a first-price sealed bid auction with n risk-neutral agents whose
valuations are independently drawn from a uniform distribution on
the same bounded interval of the real numbers, the unique
symmetric equilibrium is given by the strategy profile
(n−1n v1, . . . ,

n−1
n vn).

This equilibrium can be verified using straightforward but
somewhat involved calculus

But, how do we identify such an equilibrium in the first place?
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Revenue Equivalence

Which auction should an auctioneer choose? To some extent,
it doesn’t matter...

Theorem (Revenue Equivalence Theorem)

Assume that each of n risk-neutral agents has an independent
private valuation for a single good at auction, drawn from a
common cumulative distribution F (v) that is strictly increasing
and atomless on [v, v̄]. Then any auction mechanism in which

the good will be allocated to the agent with the highest
valuation; and

any agent with valuation v has an expected utility of zero;

yields the same expected revenue, and hence results in any bidder
with valuation v making the same expected payment.
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First and Second-Price Auctions

The kth order statistic of a distribution: the expected value of
the kth-largest of n draws.

For n IID draws from [0, vmax], the kth order statistic is

n+ 1− k
n+ 1

vmax.

Thus in a second-price auction, the seller’s expected revenue is

n− 1

n+ 1
vmax.

First and second-price auctions satisfy the requirements of the
revenue equivalence theorem

every symmetric game has a symmetric equilibrium
in a symmetric equilibrium of this auction game, higher bid ⇔
higher valuation
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Applying Revenue Equivalence

Thus, a bidder in a FPA must bid his expected payment
conditional on being the winner of a second-price auction

this conditioning will be correct if he does win the FPA;
otherwise, his bid doesn’t matter anyway
if vi is the high value, there are then n− 1 other values drawn
from the uniform distribution on [0, vi]
thus, the expected value of the second-highest bid is the
first-order statistic of n− 1 draws from [0, vi]:

n+ 1− k
n+ 1

vmax =
(n− 1) + 1− (1)

(n− 1) + 1
(vi) =

n− 1

n
vi

This provides a basis for our earlier claim about n-bidder
first-price auctions.

However, we’d still have to check that this is an equilibrium
The revenue equivalence theorem doesn’t say that every
revenue-equivalent strategy profile is an equilibrium!
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Position Auctions

Search engines make most of their money—billions of
dollars—by selling advertisements through position auctions.

Keyword-specific “slots” in a list on the right-hand side of a
page of search results are simultaneously offered to advertisers.
Slots are more valuable the closer they are to the top: more
likely to be clicked.
Every time a user searches for a keyword, an auction is held.
Advertisers pay only if a user clicks on their ad.
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Formal Model

Define the setting:

N : the set of bidders (advertisers)
vi: i’s (commonly known) valuation for a click
bi ∈ R+: i’s bid
b(j): the jth-highest bid, or 0 if there are fewer than j bids
G = {1, . . . ,m}: the set of goods (slots)
αj : the expected number of clicks (the click-through rate)
that an ad will receive if it is listed in the ith slot

Observe:

α does not depend on a bidder’s identity
the auction is modeled as unrepeated
we assume that agents know each other’s valuations
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Generalized First-Price Auctions

The generalized first-price auction was the first position
auction to be used by search engines.

Definition (Generalized first-price auction)

The generalized first-price auction (GFP) awards the bidder with
the jth-highest bid the jth slot. If bidder i’s ad receives a click, he
pays the auctioneer bi.

These auctions do not always have pure-strategy equilibria,
even in the unrepeated, perfect-information case.

if bidders bid by best responding to each other, their bid
amounts can cycle: a low bidder increases bids to try to get a
slot; he is outbid by a high bidder; eventually the low bidder
drops out; the high bidder reduces his bid; . . .
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Generalized Second-Price Auctions

The instability of bidding under the GFP led to the
introduction of the generalized second-price auction.

It is now the dominant mechanism in practice.

Definition (Generalized second-price auction)

The generalized second-price auction (GSP) awards the bidder with
the jth-highest bid the jth slot. If bidder i’s ad is ranked in slot j
and receives a click, he pays the auctioneer b(j+1).
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VCG in the position auction setting

GSP seems very similar to the VCG mechanism. However,
these two mechanisms are actually quite different, as becomes
clear when we apply the VCG formula to the position auction
setting.

Definition (VCG)

In the position auction setting, the VCG mechanism awards the
bidder with the jth-highest bid the jth slot. If bidder i’s ad is
ranked in slot j and receives a click, he pays the auctioneer
1
αj

∑m+1
k=j+1 b(k)(αk−1 − αk).

the key difference: GSP does not charge an agent his social
cost, which depends on the differences between click-through
rates that other agents would receive with and without his
presence.
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Equilibria of GSP

Truthful bidding is not an equilibrium of the GSP.

Perfect-information setting: the GSP has many equilibria.

the most stable configurations will be locally envy free: no
bidder will wish that he could switch places with the bidder
who won the slot directly above his.
There exists a locally envy-free equilibrium of the GSP that
achieves exactly the VCG allocations and payments.
All other locally envy-free equilibria lead to higher revenues for
the seller, and hence are worse for the bidders.

Beyond perfect information: one can construct a generalized
English auction that corresponds to the GSP, and to show
that this English auction has a unique equilibrium in which
payoffs are again the same as the VCG payoffs, and the
equilibrium is ex post, meaning that it is independent of the
underlying valuation distribution.
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Valuations for heterogeneous goods

now consider a case where multiple, heterogeneous goods are
being sold.

consider the sorts of valuations that agents could have in this
case:

complementarity: for sets S and T , v(S ∪ T ) > v(S) + v(T )

e.g., a left shoe and a right shoe

substitutability: v(S ∪ T ) < v(S) + v(T )

e.g., two tickets to different movies playing at the same time

substitutability is relatively easy to deal with

e.g., just sell the goods sequentially, or allow bid withdrawal

complementarity is trickier...
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Combinatorial auctions

running a simultaneous ascending auction is inefficient
exposure problem
inefficiency due to fear of exposure

if we want an efficient outcome, why not just run VCG?
unfortunately, it again requires solving an NP-complete
problem
let there be n goods, m bids, sets Cj of XOR bids
weighted set packing problem:

max

m∑
i=1

xipi

subject to
∑
i|g∈Si

xi ≤ 1 ∀g

xi ∈ {0, 1} ∀i∑
k∈Cj

xk ≤ 1 ∀j

Kevin Leyton-Brown & Yoav Shoham Mechanism Design and Auctions, Slide 93



Unrestricted Preferences Quasilinearity Efficient Mechs Auctions Position Auctions Combinatorial Auctions

Combinatorial auctions

max

m∑
i=1

xipi

subject to
∑
i|g∈Si

xi ≤ 1 ∀g

xi ∈ {0, 1} ∀i∑
k∈Cj

xk ≤ 1 ∀j

we don’t need the XOR constraints
instead, we can introduce “dummy goods” that don’t
correspond to goods in the auction, but that enforce XOR
constraints.
amounts to exactly the same thing: the first constraint has the
same form as the third

Kevin Leyton-Brown & Yoav Shoham Mechanism Design and Auctions, Slide 93



Unrestricted Preferences Quasilinearity Efficient Mechs Auctions Position Auctions Combinatorial Auctions

Winner determination problem

How do we deal with the computational complexity of the winner
determination problem?

Require bids to come from a restricted set, guaranteeing that
the WDP can be solved in polynomial time

problem: these restricted sets are very restricted...

Use heuristic methods to solve the problem

this works pretty well in practice, making it possible to solve
WDPs with many hundreds of goods and thousands of bids.
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